Publikowanie artykułów jest możliwe po podpisaniu zgody na przeniesienie licencji na czasopismo.
Niniejsza praca dotyczy dynamicznych kryteriów podobieństwa różnych zjawisk występujących w aerodynamice budynków i konstrukcji, pierwotnie wyprowadzonych ze stosunków i momentów sił wpływających na te zjawiska. Niniejsza praca jest kontynuacją pracy [12], w której omówiono podstawy tak sformułowanych kryteriów podobieństwa dynamicznego. Na końcu pracy [12] przedstawiono autorską metodę i procedurę wyznaczania kryteriów podobieństwa dynamicznego w zagadnieniach interakcji płyn–ciało stałe. Metoda ta służy jako podstawa do formułowania i rozważania dynamicznych kryteriów podobieństwa omawianych dalej dla różnych praktycznych problemów napotykanych w prostych przypadkach aerodynamiki budynków i konstrukcji, w tym drgań samowzbudnych i drgań wywołanych wiatrem.
[1] Basu R. I., “Aerodynamic forces on structures of circular cross-section. Part 2. The influence of turbulence and three-dimensional effects”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 24, (1986), 33-59. https://doi.org/10.1016/0167-6105(86)90071-1
DOI: https://doi.org/10.1016/0167-6105(86)90071-1
Google Scholar
[2] Blevins R. D., Flow-induced vibration. Second Edition, Van Nostrand Reinhold, New York 1990.
Google Scholar
[3] Blevins R. D., Burton T. E., “Fluid forces induced by vortex shedding”, Journal of Fluid Engineering, vol. 95 (1976), 19-24. https://doi.org/10.1115/1.3448196
DOI: https://doi.org/10.1115/1.3448196
Google Scholar
[4] Cook N. J., The designer’s guide to wind loading of building structures. Part I. Background damage, survey, wind data and structural classifications, Building Research Establishment, Butterworths, London 1985.
Google Scholar
[5] Flaga A., “Quasi-steady theory in aerodynamics of slender structures”. Sonderforschungsbereich 151 – Tragwerksdynamik. Wissenschaftliche Mitteilungen, Berichte 25, Ruhr-Universität Bochum, 1994.
Google Scholar
[6] Flaga A., “Quasi-steady models of wind load on slender structures, Part I. Case of a motionless structure”, Archives of Civil Engineering, vol. XL(1), 1994, 3-28.
Google Scholar
[7] Flaga A., “Quasi-steady models of wind load on slender structures, Part II. Case of a moving structure”, Archives of Civil Engineering, vol. XL(1), 1994, 29-41.
Google Scholar
[8] Flaga A., “Quasi-steady models of wind load on slender structures, Part III. Applications of quasi-steady theory in aerodynamics of slender structures”, Archives of Civil Engineering, vol. XLI(3), 1995, 343-376.
Google Scholar
[9] Flaga A., Wind engineering. Fundamentals and applications, Arkady, Warszawa 2008 (in Polish).
Google Scholar
[10] Flaga A., Wind vortex-induced excitation and vibration of slender structures – single structure of circular cross-section normal to flow. Fundamentals and applications, Monograph No.202, Cracow University of Technology, Cracow, 1996.
Google Scholar
[11] Flaga A. “Nonlinear amplitude dependent self-limiting model of lock-in phenomenon at vortex excitation”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 69-71, (1997), pp. 331-340. https://doi.org/10.1016/S0167-6105(97)00166-9
DOI: https://doi.org/10.1016/S0167-6105(97)00166-9
Google Scholar
[12] Flaga A., Kłaput R., Flaga Ł., “Dynamic similarity criteria in fluid-solid interaction at different fluid-solid relative motions: part I – fundamentals”, Archives of Civil and Mechanical Engineering, vol. 23, (2023), 28. https://doi.org/10.1007/s43452-022-00547-w
DOI: https://doi.org/10.1007/s43452-022-00547-w
Google Scholar
[13] Griffin O. M., Skop R. A., Koopman G. H., “The vortex-excited resonant vibrations of circular cylinders”, Journal of Sound and Vibration, vol. 31(2), (1973), pp. 235-249. https://doi.org/10.1016/S0022-460X(73)80377-3
DOI: https://doi.org/10.1016/S0022-460X(73)80377-3
Google Scholar
[14] Griffin O. M., Ramberg S. E., “The vortex-street wakes of vibrating cylinders”, Journal of Fluid Mechanics, vol. 66(3), (1974), pp. 553-576. https://doi.org/10.1017/S002211207400036X
DOI: https://doi.org/10.1017/S002211207400036X
Google Scholar
[15] Griffin O. M., “A universal Strouhal number for the locking-on of vortex shedding to the vibrations of bluff cylinders”, Journal of Fluid Mechanics, vol. 85(3), (1978), pp. 591-606. https://doi.org/10.1017/S0022112078000804
DOI: https://doi.org/10.1017/S0022112078000804
Google Scholar
[16] Hartlen R. T., Currie I. G., “Lift-oscillator model of vortex-induced vibration”, Journal of the Engineering Mechanics Division, ASCE, vol. 96(EM5), (1970), pp. 577-591. https://doi.org/10.1061/JMCEA3.0001276
DOI: https://doi.org/10.1061/JMCEA3.0001276
Google Scholar
[17] Nakamura Y., Mizota Z., “Torsional flutter of rectangular prisms”, ASCE Journal of the Engineering Mechanics Division, vol. 101(2), (1975), pp. 125-142. https://doi.org/10.1061/JMCEA3.000200
DOI: https://doi.org/10.1061/JMCEA3.0002001
Google Scholar
[18] Nakamura Y., Tomonari Y., “Galloping of rectangular prisms in a smooth and in a turbulent flow”, Journal of Sound and Vibrations, vol. 52(2), (1977), pp. 233-241. https://doi.org/10.1016/0022-460X(77)90642-3
DOI: https://doi.org/10.1016/0022-460X(77)90642-3
Google Scholar
[19] Nowak M., “Aeroelastic galloping of prismatic bodies”. ASCE Journal of the Engineering Mechanics Division, vol. 96, (1969), 115-142. https://doi.org/10.1061/JMCEA3.000107
DOI: https://doi.org/10.1061/JMCEA3.0001072
Google Scholar
[20] Novak M., Tanaka H., “Effect of turbulence on galloping instability”, ASCE Journal of the Engineering Mechanics Division, vol. 100, (1974), pp. 27-47. https://doi.org/10.1061/JMCEA3.000186
DOI: https://doi.org/10.1061/JMCEA3.0001861
Google Scholar
[21] Parkinson G. V., Brooks N. P. H., “On the aeroelastic instability of bluff cylinders”, Journal of Applied Mechanics, vol. 28, (1961), pp. 252-258. https://doi.org/10.1115/1.3641663
DOI: https://doi.org/10.1115/1.3641663
Google Scholar
[22] Ruscheweyh H., Dynamische Windwirkung an Bauwerken. Band 2: Praktische Anwendungen. Bauverlag, Wiesbaden und Berlin, 1982.
Google Scholar
[23] Ruscheweyh H., “Practical experiments with wind-induced vibrations”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 33, (1990), pp. 211-218. https://doi.org/10.1016/0167-6105(90)90036-C
DOI: https://doi.org/10.1016/0167-6105(90)90036-C
Google Scholar
[24] Scanlan R. H., Jones N. P., Lorendeaux O., “Comparison of taut-strip and Section-model-based approaches in long-span bridge aerodynamics”, in International Conference on Wind Engineering, New Delhi, vol. 2, (1995), pp. 950-961.
Google Scholar
[25] Scanlan R. H., Tomko J. J., “Airfoil and bridge deck flutter derivatives”, Journal of Engineering Mechanics Division, ASCE, vol. 97(EMG), (1971), pp. 1717-1737. https://doi.org/10.1061/JMCEA3.000152
DOI: https://doi.org/10.1061/JMCEA3.0001526
Google Scholar
[26] Simiu E., Scanlan R., Wind effects on structures. An introduction to wind engineering. Fundamentals and applications to the design, Third edition, John Wiley & Sons, New York, 1996.
Google Scholar
[27] Simiu E., Miyata T., Design and buildings and bridges for wind, John Wiley & Sons, Inc., New Jersey, 2006.
Google Scholar
[28] Tamura Y., Matsui G., “Wake-oscillator model of vortex-induced oscillation of circular cylinder”, in Proc. 5th International Conference Wind Engineering, Fort Collins, Colorado, USA 1979, Pergamon, Oxford 1980, pp. 1085-1094.
DOI: https://doi.org/10.1016/B978-1-4832-8367-8.50100-5
Google Scholar
[29] Tamura Y., Amano A., “Mathematical model for vortex-induced oscillations of continuous systems with circular cross section”, Journal of Wind Engineering and Industrial Aerodynamics, 14, (1983), pp. 431-442. https://doi.org/10.1016/0167-6105(83)90044-2
DOI: https://doi.org/10.1016/0167-6105(83)90044-2
Google Scholar
[30] Vickery B. J., Basu R. I., “Across-wind vibrations of structures of circular cross-section. Part I. Development of a mathematical model for two-dimensional conditions”, Journal of Wind Engineering and Industrial Aerodynamics, 12(1), (1983), pp. 49-74. https://doi.org/10.1016/0167-6105(83)90080-6
DOI: https://doi.org/10.1016/0167-6105(83)90080-6
Google Scholar
[31] Vickery B. J., Basu R. I., “Across-wind vibrations of structures of circular cross-section. Part II. Development of a mathematical model for full-scale application”, Journal of Wind Engineering and Industrial Aerodynamics, 12(1), (1983), pp. 75-98. https://doi.org/10.1016/0167-6105(83)90081-8
DOI: https://doi.org/10.1016/0167-6105(83)90081-8
Google Scholar
[32] Vickery B. J., The response of chimneys and tower-like structures to wind loading. A state of the art in wind engineering, Wiley Eastern Limited, New Delhi, 1995, 205-233.
Google Scholar
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe.
Publikowanie artykułów jest możliwe po podpisaniu zgody na przeniesienie licencji na czasopismo.