Publikowanie artykułów jest możliwe po podpisaniu zgody na przeniesienie licencji na czasopismo.
The paper presents the impact of changes in spatial development on microclimate parameters and thermal comfort. The research area covers the site of the current shopping and service centre Manufaktura in Łódź, located in the former factory complex of Izrael Poznański. Analyses were carried out for the area before and after the revitalisation process. The transformations of the building structure, reductions in green areas, and modifications of the surface were highlighted. Three-dimensional terrain models were prepared, and simulations were conducted using the ENVI-met program. The influence of development transformations on thermal comfort and microclimate was assessed. Due to the negative impact of the changes, adaptive solutions were proposed. The data obtained showed a positive influence of the implemented blue-green strategies on thermal conditions and the microclimate.
[1] Mirzaei P. A., “Recent challenges in modeling of urban heat island”, Sustainable Cities and Society, vol. 19, (2015), pp. 200-206. https://doi.org/10.1016/j.scs.2015.04.001
Google Scholar
[2] Pison G., “World population: 8 billion today, how many tomorrow?”, Population & Societies, vol. 604, (2022), pp. 1-5. https://doi.org/10.3917/popsoc.604.0001
Google Scholar
[3] Baklanov A., Molina L. T., Gauss M., “Megacities, air quality and climate”, Atmospheric Environment, vol. 126, (2016), pp. 235-249. https://doi.org/10.1016/j.atmosenv.2015.11.059
Google Scholar
[4] Lee J.-Y. et al., “Future global climate: scenario-based projections and near term information”, [in:] Masson-Delmotte V., Zhai P., Pirani A., Connors S. L., Péan C., Berger S., Caud N., Chen Y., Goldfarb L., Gomis M. I., Huang M., Leitzell K., Lonnoy E., Matthews J. B. R., Maycock T. K., Waterfield T., Yelekçi O., Yu R., Zhou B. (eds.), Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, in Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2023, pp. 553-672. https://doi.org/10.1017/9781009157896.006
Google Scholar
[5] Koch F., “Cities as transnational climate change actors: applying a global south perspective”, Third World Quarterly, vol. 42(9), (2021), pp. 2055-2073. https://doi.org/10.1080/01436597.2020.1789964
Google Scholar
[6] Oke T., Maxwell G., “Urban heat island dynamics in Montreal and Vancouver”, Atmospheric Environment, vol. 9, (1975), pp. 191-200. https://doi.org/10.1016/0004-6981(75)90067-0
Google Scholar
[7] Geletič J., Lehnert M., Savić S., Milošević D., “Inter-/intra-zonal seasonal variability of the surface urban heat island based on local climate zones in three central European cities”, Building and Environment, vol. 156, (2019), pp. 21-32. https://doi.org/10.1016/j.buildenv.2019.04.011
Google Scholar
[8] Oke T. R., “The energetic basis of the urban heat island”, Quarterly Journal of the Royal Meteorological Society, vol. 108, (1982), pp. 1-24. https://doi.org/10.1002/qj.49710845502
Google Scholar
[9] Godowitch J. M., Ching J. K. S., Clarke J. F., “Evolution of the nocturnal inversion layer at an urban and nonurban location”, Journal of Applied Meteorology and Climatology, vol. 24, (1985), pp. 791-804. https://doi.org/10.1175/1520-0450(1985)024<0791:EOTNIL>2.0.CO;2
Google Scholar
[10] Wolters D., Brandsma T., “Estimating the urban heat island in residential areas in the Netherlands using observations by weather amateurs”, Journal of Applied Meteorology Climatology, vol. 51, (2012), pp. 711-721. https://doi.org/10.1175/JAMC-D-11-0135.1
Google Scholar
[11] Theeuwes N. E., Steeneveld G.-J., Ronda R. J., Rotach M. W., Holtslag A. A. M., “Cool city mornings by urban heat”, Environmental Research Letters, vol. 10, (2015), pp. 1-9. https://doi.org/10.1088/1748-9326/10/11/114022
Google Scholar
[12] Ferrari A., Kubilay A., Derome D., Carmeliet J., “The use of permeable and reflective pavements as a potential strategy for urban heat island mitigation”, Urban Climate, vol. 31 (2020), 100534, pp. 1-25. https://doi.org/10.1016/j.uclim.2019.100534
Google Scholar
[13] Equere V., Mirzaei P. A., Riffat S., “Definition of a new morphological parameter to improve prediction of urban heat island”, Sustainable Cities and Society, vol. 56, (2020), pp. 1-18. https://doi.org/10.1016/j.scs.2020.102021
Google Scholar
[14] Theeuwes N. E. Steeneveld G.-J., Ronda R. J., Holtslag A. A. M., “A diagnostic equation for the daily maximum urban heat island effect for cities in northwestern Europe”, International Journal of Climatology, vol. 37, (2017), pp. 443-454. https://doi.org/10.1002/joc.4717
Google Scholar
[15] Blazy R., Hrehorowicz-Gaber H., Hrehorowicz-Nowak A., “Adaptation of post-industrial areas as hydrological windows to improve the city’s microclimate”, Energies, vol. 14, (2021), 4488, pp. 1-20. https://doi.org/10.3390/en14154488
Google Scholar
[16] Croce S., D’Agnolo E., Caini M., Paparella R., “The use of cool pavements for the regeneration of industrial districts”, Sustainability, vol. 13, (2021), 6322, pp. 1-24. https://doi.org/10.3390/su13116322
Google Scholar
[17] Vatani M., Kiani K., Mahdavinejad M., Georgescu M., “Evaluating the effects of different tree species on enhancing outdoor thermal comfort in a post-industrial landscape”, IOP Science Environmental Research Letters, (2024), pp. 1-14. https://doi.org/10.1088/1748-9326/ad49b7
Google Scholar
[18] Fernández Águeda B., “Urban restructuring” in former industrial cities: urban planning strategies”, Territoire en Mouvement, vol. 24(23-24), (2014), pp. 3-14. https://doi.org/10.4000/tem.2527
Google Scholar
[19] Gan T., Chen J., Yao M., Cenci J., Zhang J., He Y., “Frontier revitalisation of industrial heritage with urban–rural fringe in China, in buildings”, vol. 14, (2024), 1256, pp. 1-19. https://doi.org/10.3390/buildings14051256
Google Scholar
[20] Nikolić M., Šćekić J., Drobnjak B., Takač E., “Examined in theory – applicable in practice: potentials of sustainable industrial heritage conservation in a contemporary context – the case of Belgrade”, Sustainability, vol. 16, (2024), 2820, pp. 1-36. https://doi.org/10.3390/su16072820
Google Scholar
[21] Nastran M., Kobal M., Eler K., “Urban heat islands in relation to green land use in European cities”, Urban Forestry & Urban Greening, vol. 37, (2019), pp. 33-41. https://doi.org/10.1016/j.ufug.2018.01.008
Google Scholar
[22] Wu X., Wang G., Yao R., Wang L., Yu D., Gui X., “Investigating Surface urban heat islands in South America based on MODIS data from 2003–2016”, Remote Sensing, vol. 11, (2019), 1212. pp. 1-16. https://doi.org/10.3390/rs11101212
Google Scholar
[23] Umezaki A. S., Ribeiro F. N. D., de Oliveira A. P., Soares J., de Miranda R. M., “Numerical characterization of spatial and temporal evolution of summer urban heat island intensity in São Paulo, Brazil”, Urban Climate, vol. 32, (2020), pp. 1-12. https://doi.org/10.1016/j.uclim.2020.100615
Google Scholar
[24] Tomczak A. A., Krzysztofik S., “Integrated change planning on the historic post-industrial area in the centre of the city. A case study of water and factory estate in Lodz”, in 56th ISOCARP World Planning Congress, Doha, Qatar, November 2020 – February 2021.
Google Scholar
[25] Tomczak A. A., Krzysztofik S., “Enhancing resilience in a post-industrial city through the urban regeneration of the downtown district. A case study of part of downtown Lodz called Nowa Dzielnica”, IOP Conference Series Materials Science and Engineering, vol. 1203(2), (2021) 022114, pp. 1-10. https://doi.org/10.1088/1757-899X/1203/2/022114
Google Scholar
[26] Heim D., Klemm K., “Modelowanie elementów mikroklimatu w otoczeniu obiektów zabytkowych”, Budownictwo i Architektura, 12(3), (2013) pp. 47-52, (in polish). https://doi.org/10.35784/bud-arch.1988
Google Scholar
[27] Klemm K., Heim D., “Wind flow aspects in the renovated, post - industrial urban area”, in 2005 World Sustainable Building Conference, Tokyo, 27-29 September 2005 (SB05Tokyo).
Google Scholar
[28] Klemm K., Heim D., “Local wind and rain conditions in semi-closed narrow corridors between buildings”, in 11th International IBPSA Conference, Glasgow, Scotland, July 27-30, 2009.
Google Scholar
[29] Stasiak A., “Centrum handlowo-rozrywkowe Manufaktura jako nowa atrakcja turystyczna Łodzi”, in: Burzyński T., Łabaj M., Dziedzictwo przemysłowe jako atrakcyjny produkt dla turystyki i rekreacji. Doświadczenia krajowe i zagraniczne (in polish), Górnośląska Wyższa Szkoła Handlowa im. W. Korfantego, Urząd Miejski w Zabrzu, 2005, Zabrze, Polska, pp. 215-220.
Google Scholar
[30] Peng L. L. H., Jim C. Y., “Green-roof effects on neighborhood microclimate and human thermal sensation”, Energies, vol. 6(2), (2013), pp. 598-618. https://doi.org/10.3390/en6020598
Google Scholar
[31] Battisti A., “Bioclimatic architecture and urban morphology. studies on intermediate urban open spaces”, Energies, vol. 13(21), (2020), 5819, pp. 1-20. https://doi.org/10.3390/en13215819
Google Scholar
[32] Črepinšek Z., Žnidaršič Z., Pogačar T., “Spatio-temporal analysis of the Universal Thermal Climate Index (UTCI) for the summertime in the period 2000–2021 in Slovenia: the implication of heat stress for agricultural workers”, Agronomy, vol. 13, (2023), 331, pp. 1-16. https://doi.org/10.3390/agronomy13020331
Google Scholar
[33] Habibi A., Kahe N., “Evaluating the role of green infrastructure in microclimate and building energy efficiency”, Buildings, vol. 14, (2024), 825, pp. 1-37. https://doi.org/10.3390/buildings14030825
Google Scholar
[34] Lassandro P., Zaccaro S. A., Di Turi S., “Mitigation and adaptation strategies for different urban fabrics to face increasingly hot summer days due to climate change”, Sustainability, vol. 16, (2024), 2210, pp. 1-29. https://doi.org/10.3390/su16052210
Google Scholar
[35] Sayad B., Helmi M. R., Osra O. A., Abed A. M., Alhubashi H. H., “Microscale investigation of Urban Heat Island (UHI) in Annaba City: unveiling factors and mitigation strategies”, Sustainability, vol. 16, (2024), 747, pp. 1-29. https://doi.org/10.3390/su16020747
Google Scholar
[36] Hien W. N., Ignatius M., Eliza A., Jusuf S. K., Samsudin R., “Comparison of STEVE and ENVI-met as temperature prediction models for Singapore context”, International Journal of Sustainable Building Technology and Urban Development, vol. 3, (2012), pp. 197-209. https://doi.org/10.1080/2093761X.2012.720224
Google Scholar
[37] Zheng G., Xu H., Liu F., Dong J., “Impact of plant layout on microclimate of summer courtyard space based on orthogonal experimental design”, Sustainability, vol. 16, (2024), 4425, pp. 1-20. https://doi.org/10.3390/su16114425
Google Scholar
[38] Lenzholer S., Kohl J., “Immersed in microclimatic space: microclimate experience and perception of spatial configuration in Dutch squares”, Landscape and Urban Planning, vol. 95, (2010), pp. 1-15. https://doi.org/10.1016/j.landurbplan.2009.10.013
Google Scholar
[39] Salata F., Golasi I., De Lieto Vollaro R., De Lieto Vollaro A., “Urban microclimate and outdoor thermal comfort. A proper procedure to fit ENVI-met simulation outputs to experimental data”, Sustainable City and Society, vol. 26, (2016), pp. 318-343. https://doi.org/10.1016/j.scs.2016.07.005
Google Scholar
[40] Gomaa M. M., El Menshawy A., Nabil J., Ragab A., “Investigating the impact of various vegetation scenarios on outdoor thermal comfort in low-density residential areas of hot arid regions”, Sustainability, vol. 16, (2024), 3995, pp. 1-23. https://doi.org/10.3390/su16103995
Google Scholar
[41] Bochenek A. D., Klemm K., “Effectiveness of tree pattern in street canyons on thermal conditions and human comfort. assessment of an urban renewal project in historical district in Lodz (Poland)”, Atmosphere, vol. 12(6), (2021), 751, pp. 1-19. https://doi.org/10.3390/atmos12060751
Google Scholar
[42] Żurański J. A., Wpływ warunków klimatycznych i terenowych na obciążenie wiatrem konstrukcji budowlanych, Prace Naukowe Instytutu Techniki Budowlanej, Warszawa, Polska, 2005.
Google Scholar
[43] Simiu E., “Equivalent statistic wind load for tall building design”, in 4th International Conference on Wind Effects on Buildings and Structures, Heathrow, UK, 8-12 September 1975.
Google Scholar
[44] Bochenek A. D., Klemm K., “The impact of passive green technologies on the microclimate of historic urban structures: the case study of Lodz”, Atmosphere, vol. 11(9), (2020), 974, pp. 1-18, https://doi.org/10.3390/atmos11090974
Google Scholar
[45] Abdel-Ghany A. M., Al-Helal I. M., Shady M. R., “Human thermal comfort and heat stress in an outdoor urban arid environment: a case study”, Advances in Meteorology, vol. 2013(2), (2013), 693541, pp. 1-7. http://dx.doi.org/10.1155/2013/693541
Google Scholar
[46] Höppe P., “The Physiological Equivalent Temperature – a universal index for the biometeorological assessment of the thermal environment”, International Journal of Biometeorology, vol. 43, (1999), pp. 71-75. https://doi.org/10.1007/s004840050118
Google Scholar
[47] Sikora S., Bioklimat Wrocławia, Scientific Dissertations of the Institute of Geography and Regional Development of the University of Lodz, 2008.
Google Scholar
[48] Acero J. A., Koh E. J. Y., Li X. X., Ruefenacht L. A., Pignatta G., Norford L. K., “Thermal impact of the orientation and height of vertical greenery on pedestrian in a tropical area”, Building Simulation, vol. 12, (2019), 973-984. https://doi.org/10.1007/s12273-019-0537-1
Google Scholar
[49] Sözen İ., Oral G. K., “Outdoor thermal comfort in urban canyon and courtyard in hot arid climate: A parametric study based on the vernacular settlement of Mardin”, Sustainable Cities and Society, vol. 48, (2019), 101398, pp. 1-15. https://doi.org/10.1016/j.scs.2018.12.026
Google Scholar
[50] Herath H. M. P. I. K., Halwatura R. U., Jayasinghe G. Y., “Evaluation of green infrastructure effects on tropical Sri Lankan urban context as an urban heat island adaptation strategy”, Urban Forestry and Urban Greening, vol. 29, (2018), pp. 212-222. https://doi.org/10.1016/j.ufug.2017.11.013
Google Scholar
[51] Rui L., Buccolieri R., Gao Z., Gatto E., Ding W., “Study of the effect of green quantity and structure on thermal comfort and air quality in an urban-like residential district by ENVI-met modelling”, Building Simulation, vol. 12, (2019), pp. 183-194. https://doi.org/10.1007/s12273-018-0498-9
Google Scholar
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe.
Publikowanie artykułów jest możliwe po podpisaniu zgody na przeniesienie licencji na czasopismo.