Publikowanie artykułów jest możliwe po podpisaniu zgody na przeniesienie licencji na czasopismo.
Niniejszy artykuł analizuje wykorzystanie nowoczesnych technologii cyfrowych, takich jak skanowanie 3D i fotogrametria, w ocenie stanu technicznego zabytkowych obiektów. Porównano tradycyjne i cyfrowe metody inwentaryzacji, podkreślając zalety tych drugich w precyzyjnym i szybkim pozyskiwaniu danych przestrzennych. Opisano trzy rodzaje skaningu laserowego – uproszczony, ręczny i stacjonarny – wraz z ich zastosowaniami w dokumentacji zabytków. Przedstawiono studia przypadków, w których technologie cyfrowe zostały zastosowane do analizy i konserwacji obiektów takich jak ruiny zamku w Melsztynie, zamek w Czersku, zabytkowa cegielnia w Izbicy oraz Teatr im. Juliusza Osterwy w Lublinie. Wyniki pokazują, że technologie te zwiększają dokładność inwentaryzacji, umożliwiają wykrywanie uszkodzeń niewidocznych gołym okiem oraz oszczędzają czas i zasoby. Omówiono również wyzwania związane z przetwarzaniem dużych ilości danych oraz potrzebą specjalistycznej wiedzy i standardów. Podsumowując, zastosowanie technologii cyfrowych w ochronie dziedzictwa kulturowego oferuje znaczące korzyści i jest nieocenione dla zachowania zabytków dla przyszłych pokoleń.
[1] Antón D. Al-Habaibeh A., Queiroz T., “Generating 3D CAD models from laser scanning point cloud data to monitor and preserve heritage buildings”, in Building Engineering Facing the Challenges of the 21st Century, Bienvenido-Huertas D. and Durán-Álvarez J. Eds. Singapore: Springer Nature Singapore, vol. 345, (2023), 659-676. https://doi.org/10.1007/978-981-99-2714-2_35
DOI: https://doi.org/10.1007/978-981-99-2714-2_35
Google Scholar
[2] Canevese, E. P. and De Gottardo, T. “Beyond point clouds and virtual reality. Innovative methods and technologies for the protection and promotion of cultural heritage” ISPRS – International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-5/W1, (2017) 685-691, https://doi.org/10.5194/isprs-archives-XLII-5-W1-685-2017
DOI: https://doi.org/10.5194/isprs-archives-XLII-5-W1-685-2017
Google Scholar
[3] Chelaru B., Onuțu C., Ungureanu G., Șerbănoiu A. A., “Integration of point cloud, historical records, and condition assessment data in HBIM”, Automation in Construction, vol. 161, (2024), 105347. https://doi.org/10.1016/j.autcon.2024.105347
DOI: https://doi.org/10.1016/j.autcon.2024.105347
Google Scholar
[4] Crisan A. Pepe M., Costantino D., Herban S., “From 3D point cloud to an intelligent model set for cultural heritage conservation”, Heritage, vol. 7(3), (2024), 1419-1437. https://doi.org/10.3390/heritage7030068
DOI: https://doi.org/10.3390/heritage7030068
Google Scholar
[5] Dong P., Chen Q., LiDAR remote sensing and applications, CRC Press, 2017.
DOI: https://doi.org/10.4324/9781351233354
Google Scholar
[6] Drobek K., Trochonowicz M., “Analysis of the technical condition of the inner facades of the Donjon at the Klodzko Fortress”, Budownictwo i Architektura, vol. 23 (1), (2024), 087-100. https://doi.org/10.35784/bud-arch.5517
DOI: https://doi.org/10.35784/bud-arch.5517
Google Scholar
[7] Drobek K. Szostak B., Królikowski W., “Stocktaking methods of facilities in a state of ruin”, Budownictwo i Architektura, vol. 17(4), (2019), 5-15. https://doi.org/10.24358/Bud-Arch_18_174_01
DOI: https://doi.org/10.24358/Bud-Arch_18_174_01
Google Scholar
[8] Escudero P. A., “Scan-to-HBIM: automated transformation of point clouds into 3D BIM models for the digitization and preservation of historic buildings”, VITRUVIO - International Journal of Architectural Technology and Sustainability, vol. 8(2), (2023), 52-63. https://doi.org/10.4995/vitruvio-ijats.2023.20413
DOI: https://doi.org/10.4995/vitruvio-ijats.2023.20413
Google Scholar
[9] Gleń P., Krupa K., “Comparative analysis of the inventory process using manual measurements and laser scanning”, Budownictwo i Architektura, vol. 18(2), (2019), 21-30. https://doi.org/10.35784/bud-arch.552
DOI: https://doi.org/10.35784/bud-arch.552
Google Scholar
[10] Kantaros A. Ganetsos T., Petrescu F. I. T., “Three-dimensional printing and 3D scanning: emerging technologies exhibiting high potential in the field of cultural heritage”, Applied Sciences, vol. 13(8), (2023), 4777. https://doi.org/10.3390/app13084777
DOI: https://doi.org/10.3390/app13084777
Google Scholar
[11] Kładź M., Borkowski A., “Using BIM for the development of accessibility”, Budownictwo i Architektura, vol. 23(2), (2024), 005-013. https://doi.org/10.35784/bud-arch.5693
DOI: https://doi.org/10.35784/bud-arch.5693
Google Scholar
[12] Kruse K., Schönenberger E., “Archiving the third dimension: production, maintenance and use of 3D models in cultural heritage management”, in 3 Dimensions of Digitalised Archaeology, Hostettler M. et al. Eds. Cham: Springer International Publishing, 2024, 205-219. https://doi.org/10.1007/978-3-031-53032-6_12
DOI: https://doi.org/10.1007/978-3-031-53032-6_12
Google Scholar
[13] Kwoczyńska B., Nowak K., Woźniak K., “3D modelling of historic buildings based on integrated data from airborne and terrestrial laser scanning”, Geomatics, Landmanagement and Landscape, vol. 4, (2023), 259-273. https://doi.org/10.15576/GLL/2023.4.259
DOI: https://doi.org/10.15576/GLL/2023.4.259
Google Scholar
[14] Kysil O., Kosarevska R., Levchenko O., “The innovation of accounting and certification of historic architectural monuments using BIM technology”, Budownictwo i Architektura, vol. 19(2), (2020), 5-18. https://doi.org/10.35784/bud-arch.888
DOI: https://doi.org/10.35784/bud-arch.888
Google Scholar
[15] Llabani A., Abazaj F., “3D documentation of cultural heritage using terrestrial laser scanning”, Journal of Applied Engineering Science, vol. 22(2), (2024), 267-271. https://doi.org/10.5937/jaes0-50414
DOI: https://doi.org/10.5937/jaes0-50414
Google Scholar
[16] Mikhail E., Bethel J., McGlone J., Introduction to Modern Photogrammetry, Wiley, 2001
Google Scholar
[17] Milosz M., Kęsik J. (Eds.), 3D information technologies in cultural heritage preservation and popularisation. MDPI, 2023. Available: https://www.mdpi.com/books/book/6702 https://doi.org/10.3390/books978-3-0365-6282-7
DOI: https://doi.org/10.3390/books978-3-0365-6282-7
Google Scholar
[18] Montesanto M. Carletti M., Alvaro C., Pucci M., Saad H., “3D scanning for the preservation of the archaeological heritage: the case of Amrit (Syria) 3D”, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLVIII-M-2-2023, (2023), 1073-1080. https://doi.org/10.5194/isprs-archives-XLVIII-M-2-2023-1073-2023
DOI: https://doi.org/10.5194/isprs-archives-XLVIII-M-2-2023-1073-2023
Google Scholar
[19] Padmanabhan P., Zhang C., Charbon E., “Modeling and analysis of a direct time-of-flight sensor architecture for LIDAR applications”, Sensors vol. 19, (2019), 5464. https://doi.org/10.3390/s19245464
DOI: https://doi.org/10.3390/s19245464
Google Scholar
[20] Prokop A., Nazarko P., Ziemiański L., “Digitalization of historic buildings using modern technologies and tools”, Budownictwo i Architektura, vol. 20(2), (2021), 083-094. https://doi.org/10.35784/bud-arch.2444
DOI: https://doi.org/10.35784/bud-arch.2444
Google Scholar
[21] Puerta A., Jimenez-Rodriguez R., Fernandez-Vidal S., Fernandez-Vidal S., Photogrammetry as Engineering Design Tool, IntechOpen, 2020.
Google Scholar
[22] Salamanca S., Merchán P., Espacio A., Pérez E., Merchán M. J., “Segmentation of 3D point clouds of heritage buildings using edge detection and supervoxel-based topology”, Sensors, vol. 24(13), (2024), 4390. https://doi.org/10.3390/s24134390
DOI: https://doi.org/10.3390/s24134390
Google Scholar
[23] Szmygin B., Trochonowicz M., Klimek B., Szostak B., Badania techniczne historycznych ruin, Wydawnictwo Politechniki Lubelskiej, 2018.
Google Scholar
[24] Tanasi D. Stroud K., Cardona D., Calderone D., Trapani P., Pirone F., “Digital preservation and archaeoastronomical insights: 3D digitization of megalithic heritage in the Maltese Archipelago”, Journal of Applied Geophysics, vol. 227, (2024), 105434. https://doi.org/10.1016/j.jappgeo.2024.105434
DOI: https://doi.org/10.1016/j.jappgeo.2024.105434
Google Scholar
[25] Uchański Ł., Karsznia K., “The use of Terrestrial Laser Scanning for the purposes of preparing technical documentation in BIM technology”, Budownictwo i Architektura, vol. 17(3), (2018), 189–199. https://doi.org/10.24358/Bud-Arch_18_173_14
DOI: https://doi.org/10.24358/Bud-Arch_18_173_14
Google Scholar
[26] Wang J., Song J., Feng M., “Spatial virtual recovery design technology of ancient buildings based on 3D laser scanning technology”, AIP Advances, vol. 14(5), (2024), 055324. https://doi.org/10.1063/5.0192188
DOI: https://doi.org/10.1063/5.0192188
Google Scholar
[27] Yastikli N., “Documentation of cultural heritage using digital photogrammetry and laser scanning”, Journal of Cultural Heritage, vol. 8(4), (2007), 423-427. https://doi.org/10.1016/j.culher.2007.06.003
DOI: https://doi.org/10.1016/j.culher.2007.06.003
Google Scholar
[28] Yilmaz H. M., Taglieri G., Quaresima R., “Documentation of historical monuments using laser scanning and photogrammetry”, Journal of Cultural Heritage, vol. 9(4), (2008), 423-427 . https://doi.org/10.1016/j.culher.2007.10.007
DOI: https://doi.org/10.1016/j.culher.2007.10.007
Google Scholar
[29] Technical data sheet. https://3d.tpi.com.pl/wp-content/uploads/2022/03/geoslam_zeb-horizon.pdf. Geoslam Zeb Horizon, 01.10.2024.
Google Scholar
[30] Technical data sheet. https://tpi.com.pl/assets/zdjecia/katalogiTPI/katalog_geodezja_2017_-18.pdf. Faro Focus S150, 01.10.2024.
Google Scholar
[31] Technical data sheet. https://tpi.com.pl/wp-content/uploads/2023/01/matterport_pro2_ulotka.pdf. Matterport Pro 2, 01.10.2024.
Google Scholar
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe.
Publikowanie artykułów jest możliwe po podpisaniu zgody na przeniesienie licencji na czasopismo.