TWO-PHASE FLOW STRUCTURE IDENTIFICATION BASED ON FUZZY ASSESMENT OF 3D TOMOGRAPHICAL IMAGING
Tomasz Jaworski
tjaworski@kis.p.lodz.plLodz University of Technology, Institute of Applied Computer Science (Poland)
Paweł Fiderek
Lodz University of Technology, Institute of Applied Computer Science (Poland)
Radosław Wajman
Lodz University of Technology, Institute of Applied Computer Science (Poland)
Robert Banasiak
Lodz University of Technology, Institute of Applied Computer Science (Poland)
Abstract
The following paper presents results of research on automated two-phase flow pattern identification, which is based on a fuzzy assessment of registered spatial images. Such images are obtained from 3D tomography reconstruction algorithms and for each a set of fuzzy-based features is calculated. Finally, acquired features are used to classify obtained image to one of flow regime structures.
Keywords:
fuzzy logic, fuzzy image assessment, image processing, spatial imagesReferences
Al-sharhan S. , Karray F. , Gueaieb W., Basir O.: Fuzzy entropy: a brief survey in Fuzzy Systems. The 10th IEEE International Conference on, vol. 3, 2001, pp. 1135-1139.
Google Scholar
Banasiak R. , Wajman R. , Fidos H. , Fiderek P. , Jaworski T. , Nowakowski J. , Sankowski D. : System trójwymiarowej tomografii pojemnościowej w zastosowaniu do wyznaczania udziału faz oraz identyfikacji struktur w przepływach mieszanin gaz-ciecz. IAPGOS, 2013, nr 3, 28-31.
DOI: https://doi.org/10.35784/iapgos.1459
Google Scholar
Caniere H. , Bauwens B. , T’Joen C. , and Paepe M. D.: Probabilistic mapping of adiabatic horizontal two-phase flow by capacitance signal feature clustering. International Journal of Multiphase Flow, vol. 35, no. 7, 2009, pp. 650 – 660.
DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2009.03.006
Google Scholar
Cho K.-H., Kim S. , Lee Y.-J.: A fast eit image reconstruction method for the two-phase flow visualization. International Communications in Heat and Mass Transfer, vol. 26, no. 5, 1999, pp. 637 – 646.
DOI: https://doi.org/10.1016/S0735-1933(99)00050-0
Google Scholar
Cho K. H., Kim S. , Lee Y. J.: Impedance imaging of two-phase flow field with mesh grouping method. Nuclear Engineering and Design, vol. 204, no. 1–3, 2001, pp. 57 – 67.
DOI: https://doi.org/10.1016/S0029-5493(00)00320-4
Google Scholar
Cortes C. and Vapnik V. , Support-vector networks. Mach. Learn., vol. 20, Sept. 1995, pp. 273–297.
DOI: https://doi.org/10.1007/BF00994018
Google Scholar
Dunn J. C.: A fuzzy relative of the ISODATA process and its use in detecting compact Well-Separated clusters. Journal of Cybernetics, vol. 3, no. 3, 1973, pp. 32–57.
DOI: https://doi.org/10.1080/01969727308546046
Google Scholar
Evgeniou T. , Pontil M. and Elisseeff A.: Leave one out error, stability, and generalization of voting combinations of classifiers. Mach. Learn., vol. 55, Apr. 2004, pp. 71–97.
DOI: https://doi.org/10.1023/B:MACH.0000019805.88351.60
Google Scholar
Guyon I. , Weston J. , Barnhill S. , Vapnik V.: Gene selection for cancer classification using support vector machines. Mach. Learn., vol. 46, Mar. 2002, pp. 389–422.
DOI: https://doi.org/10.1023/A:1012487302797
Google Scholar
Kohavi R. and Provost F.: Glossary of terms. Machine Learning, vol. 30, pp. 271–274, 1998. 10.1023/A:1017181826899.
DOI: https://doi.org/10.1023/A:1007442505281
Google Scholar
Li H. , Zhou Z. , Hu C.: Measurement and evaluation of two-phase flow parameters. Instrumentation and Measurement, IEEE Transactions on, vol. 41, apr 1992, pp. 298 –303.
DOI: https://doi.org/10.1109/19.137364
Google Scholar
Rahmat M. F., Kamaruddin N. S., Isa M. D.: Flow regime identification in pneumatic conveyor using electrodynamic transducer and fuzzy logic method. Journal on Smart Sensing and Intelligent Systems, vol. 2, 2009, pp. 396–416.
DOI: https://doi.org/10.21307/ijssis-2017-357
Google Scholar
Rifkin R. and Klautau A.: In defense of one-vs-all classification. J. Mach. Learn. Res., vol. 5, Dec. 2004, pp. 101–141.
Google Scholar
Tsoukalas L. H., Ishii M. , and Mi Y.: A neurofuzzy methodology for impedance-based multiphase flow identification. Engineering Applications of Artificial Intelligence, vol. 10, no. 6, 1997, pp. 545 – 555.
DOI: https://doi.org/10.1016/S0952-1976(97)00037-7
Google Scholar
Wajman R. , Banasiak R.: Nowa metoda tunelowego wyznaczania macierzy wrażliwości dla potrzeb procesu rekonstrukcji obrazów dla trójwymiarowej tomografii pojemnościowej. IAPGOS, 2013, nr 3, 32-37.
DOI: https://doi.org/10.35784/iapgos.1460
Google Scholar
Authors
Tomasz Jaworskitjaworski@kis.p.lodz.pl
Lodz University of Technology, Institute of Applied Computer Science Poland
Authors
Paweł FiderekLodz University of Technology, Institute of Applied Computer Science Poland
Authors
Radosław WajmanLodz University of Technology, Institute of Applied Computer Science Poland
Authors
Robert BanasiakLodz University of Technology, Institute of Applied Computer Science Poland
Statistics
Abstract views: 157PDF downloads: 174
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Most read articles by the same author(s)
- Tomasz Jaworski, Jacek Kucharski, FUZZY EVALUATION OF VISUAL CONNECTEDNESS IN THERMOGRAPHY IMAGES OF CYLINDRICAL SURFACE , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 5 No. 1 (2015)
- Paweł Fiderek, Radosław Wajman, Jacek Kucharski, THE FUZZY SYSTEM FOR RECOGNITION AND CONTROL OF THE TWO PHASE GAS-LIQUID FLOWS , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 5 No. 4 (2015)