TWO-PHASE FLOW STRUCTURE IDENTIFICATION BASED ON FUZZY ASSESMENT OF 3D TOMOGRAPHICAL IMAGING

Tomasz Jaworski

tjaworski@kis.p.lodz.pl
Lodz University of Technology, Institute of Applied Computer Science (Poland)

Paweł Fiderek


Lodz University of Technology, Institute of Applied Computer Science (Poland)

Radosław Wajman


Lodz University of Technology, Institute of Applied Computer Science (Poland)

Robert Banasiak


Lodz University of Technology, Institute of Applied Computer Science (Poland)

Abstract

The following paper presents results of research on automated two-phase flow pattern identification, which is based on a fuzzy assessment of registered spatial images. Such images are obtained from 3D tomography reconstruction algorithms and for each a set of fuzzy-based features is calculated. Finally, acquired features are used to classify obtained image to one of flow regime structures.


Keywords:

fuzzy logic, fuzzy image assessment, image processing, spatial images

Al-sharhan S. , Karray F. , Gueaieb W., Basir O.: Fuzzy entropy: a brief survey in Fuzzy Systems. The 10th IEEE International Conference on, vol. 3, 2001, pp. 1135-1139.
  Google Scholar

Banasiak R. , Wajman R. , Fidos H. , Fiderek P. , Jaworski T. , Nowakowski J. , Sankowski D. : System trójwymiarowej tomografii pojemnościowej w zastosowaniu do wyznaczania udziału faz oraz identyfikacji struktur w przepływach mieszanin gaz-ciecz. IAPGOS, 2013, nr 3, 28-31.
DOI: https://doi.org/10.35784/iapgos.1459   Google Scholar

Caniere H. , Bauwens B. , T’Joen C. , and Paepe M. D.: Probabilistic mapping of adiabatic horizontal two-phase flow by capacitance signal feature clustering. International Journal of Multiphase Flow, vol. 35, no. 7, 2009, pp. 650 – 660.
DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2009.03.006   Google Scholar

Cho K.-H., Kim S. , Lee Y.-J.: A fast eit image reconstruction method for the two-phase flow visualization. International Communications in Heat and Mass Transfer, vol. 26, no. 5, 1999, pp. 637 – 646.
DOI: https://doi.org/10.1016/S0735-1933(99)00050-0   Google Scholar

Cho K. H., Kim S. , Lee Y. J.: Impedance imaging of two-phase flow field with mesh grouping method. Nuclear Engineering and Design, vol. 204, no. 1–3, 2001, pp. 57 – 67.
DOI: https://doi.org/10.1016/S0029-5493(00)00320-4   Google Scholar

Cortes C. and Vapnik V. , Support-vector networks. Mach. Learn., vol. 20, Sept. 1995, pp. 273–297.
DOI: https://doi.org/10.1007/BF00994018   Google Scholar

Dunn J. C.: A fuzzy relative of the ISODATA process and its use in detecting compact Well-Separated clusters. Journal of Cybernetics, vol. 3, no. 3, 1973, pp. 32–57.
DOI: https://doi.org/10.1080/01969727308546046   Google Scholar

Evgeniou T. , Pontil M. and Elisseeff A.: Leave one out error, stability, and generalization of voting combinations of classifiers. Mach. Learn., vol. 55, Apr. 2004, pp. 71–97.
DOI: https://doi.org/10.1023/B:MACH.0000019805.88351.60   Google Scholar

Guyon I. , Weston J. , Barnhill S. , Vapnik V.: Gene selection for cancer classification using support vector machines. Mach. Learn., vol. 46, Mar. 2002, pp. 389–422.
DOI: https://doi.org/10.1023/A:1012487302797   Google Scholar

Kohavi R. and Provost F.: Glossary of terms. Machine Learning, vol. 30, pp. 271–274, 1998. 10.1023/A:1017181826899.
DOI: https://doi.org/10.1023/A:1007442505281   Google Scholar

Li H. , Zhou Z. , Hu C.: Measurement and evaluation of two-phase flow parameters. Instrumentation and Measurement, IEEE Transactions on, vol. 41, apr 1992, pp. 298 –303.
DOI: https://doi.org/10.1109/19.137364   Google Scholar

Rahmat M. F., Kamaruddin N. S., Isa M. D.: Flow regime identification in pneumatic conveyor using electrodynamic transducer and fuzzy logic method. Journal on Smart Sensing and Intelligent Systems, vol. 2, 2009, pp. 396–416.
DOI: https://doi.org/10.21307/ijssis-2017-357   Google Scholar

Rifkin R. and Klautau A.: In defense of one-vs-all classification. J. Mach. Learn. Res., vol. 5, Dec. 2004, pp. 101–141.
  Google Scholar

Tsoukalas L. H., Ishii M. , and Mi Y.: A neurofuzzy methodology for impedance-based multiphase flow identification. Engineering Applications of Artificial Intelligence, vol. 10, no. 6, 1997, pp. 545 – 555.
DOI: https://doi.org/10.1016/S0952-1976(97)00037-7   Google Scholar

Wajman R. , Banasiak R.: Nowa metoda tunelowego wyznaczania macierzy wrażliwości dla potrzeb procesu rekonstrukcji obrazów dla trójwymiarowej tomografii pojemnościowej. IAPGOS, 2013, nr 3, 32-37.
DOI: https://doi.org/10.35784/iapgos.1460   Google Scholar


Published
2013-07-24

Cited by

Jaworski, T., Fiderek, P. ., Wajman, R. ., & Banasiak, R. (2013). TWO-PHASE FLOW STRUCTURE IDENTIFICATION BASED ON FUZZY ASSESMENT OF 3D TOMOGRAPHICAL IMAGING. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 3(3), 41–48. https://doi.org/10.35784/iapgos.1462

Authors

Tomasz Jaworski 
tjaworski@kis.p.lodz.pl
Lodz University of Technology, Institute of Applied Computer Science Poland

Authors

Paweł Fiderek 

Lodz University of Technology, Institute of Applied Computer Science Poland

Authors

Radosław Wajman 

Lodz University of Technology, Institute of Applied Computer Science Poland

Authors

Robert Banasiak 

Lodz University of Technology, Institute of Applied Computer Science Poland

Statistics

Abstract views: 157
PDF downloads: 174