RESEARCH ON THE COMBUSTION PROCESS USING TIME SERIES
Żaklin Grądz
z.gradz@pollub.plLublin Univeristy of Technology, Department of Electronics and Computer Science (Poland)
http://orcid.org/0000-0003-1902-4953
Abstract
In the combustion process, one of the most important tasks is related to maintaining its stability. Numerous methods of monitoring, diagnostics, and analysis of the measurement data are used for this purpose. The information recorded in the combustion chamber constitute one-dimensional time series. In the case of non-stationary time series, which can be transformed into the stationary form, the autoregressive integrated moving average process can be employed. The paper presented the issue of forecasting the changes in flame luminosity. The investigations discussed in the work were carried out with the ARIMA model (p,d,q). The presented forecasts of changes in flame luminosity reflect the actual processes, which enables to employ them in diagnostics and control of the combustion process.
Keywords:
time series, ARIMA model, flame luminosityReferences
Box G.E.P, Jenkins G.M.: Analiza szeregów czasowych Prognozowanie i sterowanie, Warszawa 1983.
Google Scholar
Díaz-Robles L.A., Ortega J.C., Fu J.S. et al.: A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: the case of Temuco, Chile. Atmospheric Environment 42(35), 2008, 8331–8340.
DOI: https://doi.org/10.1016/j.atmosenv.2008.07.020
Google Scholar
Ding S., Dang Y.G., Li X.M., Wang J.J., Zhao K.: Forecasting Chinese CO2 emissions from fuel combustion using a novel grey multivariable model. Journal of Cleaner Production 162, 2017, 1527–1538.
DOI: https://doi.org/10.1016/j.jclepro.2017.06.167
Google Scholar
Jiang S., Yang C., Guo J., Ding Z.: ARIMA forecasting of China’s coal consumption, price and investment by 2030. Energy Sources, Part B: Economics, Planning, and Policy 13(3), 2018, 190–195.
Google Scholar
Komada P.: Analiza procesu termicznej przeróbki biomasy. Monografie – Polska Akademia Nauk. Komitet Inżynierii Środowiska, Warszawa 2019.
Google Scholar
Korbicz J., Kościelny J.M., Kowalczuk Z., Cholewa W.: Diagnostyka procesów, Modele, Metody sztucznej inteligencji, Zastosowania. Wydawnictwo Naukowo-Techniczne, Warszawa 2002.
Google Scholar
Kordylewski W. i inni.: Spalanie i paliwa. Politechnika Wrocławska, Wrocław 2008.
Google Scholar
Kotyra A., Wojcik W., Gromaszek K., Smolarz A., Jagiełło, K.: Assessment of biomass-coal co-combustion on the basis of flame image. Przegląd Elektrotechniczny 88(11b), 2012, 241–243.
Google Scholar
Kotyra A., Wójcik W., Gromaszek K., Bazil G.: Application of flame image series analysis in estimation of biomass and coal combustion operating point. Przegląd Elektrotechniczny 8(92)2016, 129–132.
DOI: https://doi.org/10.15199/48.2016.08.35
Google Scholar
Lu G., Yan Y., Colechin M.: A digital imaging based multifunctional flame monitoring system. IEEE Transactions on instrumentation and measurement, 53(4), 2004, 1152–1158.
DOI: https://doi.org/10.1109/TIM.2004.830571
Google Scholar
Mahla S.K., Parmar K.S., Singh J., Dhir A., Sandhu S.S., Chauhan B.S.: Trend and time series analysis by ARIMA model to predict the emissions and performance characteristics of biogas fueled compression ignition engine. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–12.
DOI: https://doi.org/10.1080/15567036.2019.1670286
Google Scholar
Ong C.S., Huang J.J., Tzeng G.H.: Model identification of ARIMA family using genetic algorithms. Applied Mathematics and Computation 164(3), 2005, 885–912.
DOI: https://doi.org/10.1016/j.amc.2004.06.044
Google Scholar
Sanchez A.B., Ordonez C., Lasheras F.S., Juez F.J.D., Roca-Pardinas J.: Forecasting SO2 Pollution Incidents by means of Elman Artificial Neural Networks and ARIMA Models, Abstract and Applied Analysis 2013, Article ID 238259.
DOI: https://doi.org/10.1155/2013/238259
Google Scholar
Savchuk Т. О., Kozachuk A., Gromaszek K., Sugurova L.: Forecasting the state of technogenic emergency situation on the railway transport using data mining technologies. Przegląd Elektrotechniczny 1, 2014, 50–54.
Google Scholar
Sawicki D., Kotyra A., Perdesh K.: Ekstrakcja cech obrazów płomienia współspalania węgla i biomasy z wykorzystaniem wizyjnego systemu diagnostycznego. Przegląd Elektrotechniczny 92(8), 2016, 133–136.
DOI: https://doi.org/10.15199/48.2016.08.36
Google Scholar
Sawicki D., Kotyra A., Akhmetova A., Baglan I., Suleymenov A.: Using Optical Methods for Process State Classification of Co-firing of Coal and Biomass. Annual Set The Environment Protection 2(18), 2016, 404–415.
Google Scholar
Sawicki D., Kotyra A.: A quality factor of co-firing pulverized coal and biomass. Przegląd Elektrotechniczny 92(11), 2016, 140–143.
DOI: https://doi.org/10.15199/48.2016.11.35
Google Scholar
Smolarz A., Wójcik W., Gromaszek K., Komada P., Lytvynenko V.I., Mussabekov N., Toigozhinova A.: Artificial intelligence methods in diagnostics of coal-biomass blends cocombustion in pulverised coal burners. Environmental Engineering V, 2017, 311–317.
DOI: https://doi.org/10.1201/9781315281971-44
Google Scholar
Wójcik W., Gromaszek K., Shegebayeva Z., Suleimenov B., Burlibay A.: Optimal control for combustion process. Przegląd Elektrotechniczny 90(4), 2014, 157–160.
Google Scholar
Wójcik W., Gromaszek K., Smailova S.: Using optical signals for pulverised coal combustion process optimal control to increase economic efficiency of the boiler. Actual Problems of Economics 4, 2013, 307–311.
Google Scholar
Wojcik W., Kotyra A., Komada P., Golec T.: Fiber optic system detecting the type of burned fuel in power boilers. Proc. of SPIE 5125, 2003.
DOI: https://doi.org/10.1117/12.497731
Google Scholar
Wójcik W.: Application of fibre-optic flame monitoring systems to diagnostics of combustion process in power boilers. Bulletin of the Polish Academy of Sciences – Technical Sciences 56(2), 2008, 177–195.
Google Scholar
Wójcik W.: Światłowodowy układ do monitorowania procesu spalania, PAK 53(11), 2007, 24–28.
Google Scholar
Zhou H., Li Y., Tang Q., Lu G., Yan Y.: Combining flame monitoring techniques and support vector machine for the online identification of coal blends. Journal of Zhejiang University – Science A 18(9), 2017, 677–689.
DOI: https://doi.org/10.1631/jzus.A1600454
Google Scholar
Zyska T., Wójcik W., Imanbek B., Zhirnova O.: Diagnostyka stanu czujnika termoelektrycznego w procesie zgazowania biomasy. Rocznik Ochrona Środowiska 18(2)/2016, 652–666.
Google Scholar
Authors
Żaklin Grądzz.gradz@pollub.pl
Lublin Univeristy of Technology, Department of Electronics and Computer Science Poland
http://orcid.org/0000-0003-1902-4953
Statistics
Abstract views: 311PDF downloads: 197
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Most read articles by the same author(s)
- Oksana Boyko, Nataliya Dorosh, Irena Yermakova, Oleh Dorosh, Żaklin Grądz, INFOCOMMUNICATION TECHNOLOGIES FOR ASSESSMENT AND PREDICTION OF ENVIRONMENT IMPACT ON HUMAN HEALTH , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 10 No. 3 (2020)
- Żaklin Grądz, Joanna Styczeń, DIAGNOSTIC OF THE COMBUSTION PROCESS USING THE ANALYSIS OF CHANGES IN FLAME LUMINOSITY , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 9 No. 3 (2019)
- Żaklin Grądz, SELECTED ASPECTS IN THE ANALYSIS OF THE COMBUSTION PROCESS USING WAVELET TRANSFORM , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 10 No. 3 (2020)
- Żaklin Grądz, ANALYSIS OF THE FLAME PULSATION SIGNALS USING A SHORT-TIME FOURIER TRANSFORM , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 8 No. 3 (2018)
- Żaklin Grądz, Jacek Klimek, Czesław Kozak, FLAME ANALYSIS BY SELECTED METHODS IN THE FREQUENCY DOMAIN , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 12 No. 4 (2022)