RESEARCH ON THE COMBUSTION PROCESS USING TIME SERIES
Article Sidebar
Open full text
Issue Vol. 10 No. 2 (2020)
-
TRANSISTOR-BASED TEMPERATURE MEASURING DEVICE
Oleksandra Hotra4-7
-
ANALYSIS OF ALL-PASS FILTERS APPLICATION TO ELIMINATE NEGATIVE EFFECTS OF LOUDNESS WAR TREND
Marcin Maciejewski, Wojciech Surtel, Krzysztof Nowak8-11
-
LOGICAL CLASSIFICATION TREES IN RECOGNITION PROBLEMS
Igor Povhan12-15
-
RANKING OF WEBSITES CREATED WITH THE USE OF ISOWQ RANK ALGORITHM
Mariusz Duka16-19
-
OVERVIEW OF BROADBAND INFORMATION SYSTEMS ARCHITECTURE FOR CRISIS MANAGEMENT
Jacek Wilk-Jakubowski20-23
-
TIME-VARIANT MODEL OF HEAT-AND-MASS EXCHANGE FOR STEAM HUMIDIFIER
Igor Golinko, Volodymyr Drevetskiy24-27
-
NONSTATIONARY HEAT CONDUCTION IN MULTILAYER GLAZING SUBJECTED TO DISTRIBUTED HEAT SOURCES
Natalia Smetankina, Oleksii Postnyi28-31
-
REAL-TIME MONITORING OF CELL CULTURES WITH NICKEL COMB CAPACITORS
Andrzej Kociubiński, Dawid Zarzeczny, Maciej Szypulski, Aleksandra Wilczyńska, Dominika Pigoń, Teresa Małecka-Massalska, Monika Prendecka32-35
-
AN OVERVIEW OF CLASSIFICATION METHODS FROM DERMOSCOPY IMAGES IN SKIN LESION DIAGNOSTIC
Magdalena Michalska, Oksana Boyko36-39
-
SOFTWARE DEVELOPMENT FOR SMART HOME PROCESS CONTROL
Vitalii Kopeliuk, Vira Voronytska, Volodymyr Havryliuk40-43
-
EXERGY-BASED CONTROL STRATEGY IN A DWELLING VENTILATION SYSTEM WITH HEAT RECOVERY
Volodymyr Voloshchuk, Mariya Polishchuk44-47
-
ANALYSIS OF THE ELECTRICITY METERING SYSTEM FOR OWN ELECTRIC SUBSTATION NEEDS
Sergiy Stets, Andriy Stets48-51
-
RESEARCH ON THE COMBUSTION PROCESS USING TIME SERIES
Żaklin Grądz52-55
-
RESEARCH AND SIMULATION OF THE LOCAL NAVIGATION SYSTEM OF TERRESTRIAL MOBILE ROBOT
Andrii Rudyk, Viktoriia Rudyk, Mykhailo Matei56-61
-
DESIGN OF MULTIFUNCTION SIMULATOR FOR ENGINE ROOM PERSONNEL TRAINING
Artem Ivanov, Igor Kolosov, Vadim Danyk, Sergey Voronenko, Yurii Lebedenko, Hanna Rudakova62-69
-
MODEL PREDICTIVE CONTROL APPLICATION IN THE ENERGY SAVING TECHNOLOGY OF BASIC OXYGEN FURNACE
Oleksandr Stepanets, Yurii Mariiash70-74
Archives
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
-
Vol. 10 No. 4
2020-12-20 16
-
Vol. 10 No. 3
2020-09-30 22
-
Vol. 10 No. 2
2020-06-30 16
-
Vol. 10 No. 1
2020-03-30 19
-
Vol. 9 No. 4
2019-12-16 20
-
Vol. 9 No. 3
2019-09-26 20
-
Vol. 9 No. 2
2019-06-21 16
-
Vol. 9 No. 1
2019-03-03 13
-
Vol. 8 No. 4
2018-12-16 16
-
Vol. 8 No. 3
2018-09-25 16
-
Vol. 8 No. 2
2018-05-30 18
-
Vol. 8 No. 1
2018-02-28 18
Main Article Content
DOI
Authors
Abstract
In the combustion process, one of the most important tasks is related to maintaining its stability. Numerous methods of monitoring, diagnostics, and analysis of the measurement data are used for this purpose. The information recorded in the combustion chamber constitute one-dimensional time series. In the case of non-stationary time series, which can be transformed into the stationary form, the autoregressive integrated moving average process can be employed. The paper presented the issue of forecasting the changes in flame luminosity. The investigations discussed in the work were carried out with the ARIMA model (p,d,q). The presented forecasts of changes in flame luminosity reflect the actual processes, which enables to employ them in diagnostics and control of the combustion process.
Keywords:
References
Box G.E.P, Jenkins G.M.: Analiza szeregów czasowych Prognozowanie i sterowanie, Warszawa 1983.
Díaz-Robles L.A., Ortega J.C., Fu J.S. et al.: A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: the case of Temuco, Chile. Atmospheric Environment 42(35), 2008, 8331–8340. DOI: https://doi.org/10.1016/j.atmosenv.2008.07.020
Ding S., Dang Y.G., Li X.M., Wang J.J., Zhao K.: Forecasting Chinese CO2 emissions from fuel combustion using a novel grey multivariable model. Journal of Cleaner Production 162, 2017, 1527–1538. DOI: https://doi.org/10.1016/j.jclepro.2017.06.167
Jiang S., Yang C., Guo J., Ding Z.: ARIMA forecasting of China’s coal consumption, price and investment by 2030. Energy Sources, Part B: Economics, Planning, and Policy 13(3), 2018, 190–195.
Komada P.: Analiza procesu termicznej przeróbki biomasy. Monografie – Polska Akademia Nauk. Komitet Inżynierii Środowiska, Warszawa 2019.
Korbicz J., Kościelny J.M., Kowalczuk Z., Cholewa W.: Diagnostyka procesów, Modele, Metody sztucznej inteligencji, Zastosowania. Wydawnictwo Naukowo-Techniczne, Warszawa 2002.
Kordylewski W. i inni.: Spalanie i paliwa. Politechnika Wrocławska, Wrocław 2008.
Kotyra A., Wojcik W., Gromaszek K., Smolarz A., Jagiełło, K.: Assessment of biomass-coal co-combustion on the basis of flame image. Przegląd Elektrotechniczny 88(11b), 2012, 241–243.
Kotyra A., Wójcik W., Gromaszek K., Bazil G.: Application of flame image series analysis in estimation of biomass and coal combustion operating point. Przegląd Elektrotechniczny 8(92)2016, 129–132. DOI: https://doi.org/10.15199/48.2016.08.35
Lu G., Yan Y., Colechin M.: A digital imaging based multifunctional flame monitoring system. IEEE Transactions on instrumentation and measurement, 53(4), 2004, 1152–1158. DOI: https://doi.org/10.1109/TIM.2004.830571
Mahla S.K., Parmar K.S., Singh J., Dhir A., Sandhu S.S., Chauhan B.S.: Trend and time series analysis by ARIMA model to predict the emissions and performance characteristics of biogas fueled compression ignition engine. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–12. DOI: https://doi.org/10.1080/15567036.2019.1670286
Ong C.S., Huang J.J., Tzeng G.H.: Model identification of ARIMA family using genetic algorithms. Applied Mathematics and Computation 164(3), 2005, 885–912. DOI: https://doi.org/10.1016/j.amc.2004.06.044
Sanchez A.B., Ordonez C., Lasheras F.S., Juez F.J.D., Roca-Pardinas J.: Forecasting SO2 Pollution Incidents by means of Elman Artificial Neural Networks and ARIMA Models, Abstract and Applied Analysis 2013, Article ID 238259. DOI: https://doi.org/10.1155/2013/238259
Savchuk Т. О., Kozachuk A., Gromaszek K., Sugurova L.: Forecasting the state of technogenic emergency situation on the railway transport using data mining technologies. Przegląd Elektrotechniczny 1, 2014, 50–54.
Sawicki D., Kotyra A., Perdesh K.: Ekstrakcja cech obrazów płomienia współspalania węgla i biomasy z wykorzystaniem wizyjnego systemu diagnostycznego. Przegląd Elektrotechniczny 92(8), 2016, 133–136. DOI: https://doi.org/10.15199/48.2016.08.36
Sawicki D., Kotyra A., Akhmetova A., Baglan I., Suleymenov A.: Using Optical Methods for Process State Classification of Co-firing of Coal and Biomass. Annual Set The Environment Protection 2(18), 2016, 404–415.
Sawicki D., Kotyra A.: A quality factor of co-firing pulverized coal and biomass. Przegląd Elektrotechniczny 92(11), 2016, 140–143. DOI: https://doi.org/10.15199/48.2016.11.35
Smolarz A., Wójcik W., Gromaszek K., Komada P., Lytvynenko V.I., Mussabekov N., Toigozhinova A.: Artificial intelligence methods in diagnostics of coal-biomass blends cocombustion in pulverised coal burners. Environmental Engineering V, 2017, 311–317. DOI: https://doi.org/10.1201/9781315281971-44
Wójcik W., Gromaszek K., Shegebayeva Z., Suleimenov B., Burlibay A.: Optimal control for combustion process. Przegląd Elektrotechniczny 90(4), 2014, 157–160.
Wójcik W., Gromaszek K., Smailova S.: Using optical signals for pulverised coal combustion process optimal control to increase economic efficiency of the boiler. Actual Problems of Economics 4, 2013, 307–311.
Wojcik W., Kotyra A., Komada P., Golec T.: Fiber optic system detecting the type of burned fuel in power boilers. Proc. of SPIE 5125, 2003. DOI: https://doi.org/10.1117/12.497731
Wójcik W.: Application of fibre-optic flame monitoring systems to diagnostics of combustion process in power boilers. Bulletin of the Polish Academy of Sciences – Technical Sciences 56(2), 2008, 177–195.
Wójcik W.: Światłowodowy układ do monitorowania procesu spalania, PAK 53(11), 2007, 24–28.
Zhou H., Li Y., Tang Q., Lu G., Yan Y.: Combining flame monitoring techniques and support vector machine for the online identification of coal blends. Journal of Zhejiang University – Science A 18(9), 2017, 677–689. DOI: https://doi.org/10.1631/jzus.A1600454
Zyska T., Wójcik W., Imanbek B., Zhirnova O.: Diagnostyka stanu czujnika termoelektrycznego w procesie zgazowania biomasy. Rocznik Ochrona Środowiska 18(2)/2016, 652–666.
Article Details
Abstract views: 380
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
