ASSESSMENT OF THE DIAGNOSTIC VALUE OF THE METHOD OF COMPUTER OLFACTOMETRY


Abstract

Olfactory studies can be a criterion for evaluating rhinosurgical intervention, and olfactory impairment may indicate respiratory impairment. Therefore, the urgent task is to develop an integrated approach to determining respiratory and olfactory disorders. A structural scheme was developed for the method of objective diagnosis of respiratory and olfactory disorders, taking into account the measu, rement of both the aerodynamic parameters of nasal breathing and the calculation of energy characteristics, which are used to determine olfactory sensitivity. The diagnostic significance of the proposed method of analyzing rhinofolipometry data with regard to additional parameters was assessed - it is necessary to take into account the time and power of breathing when the threshold of sensation of the odorivector is at the transition point of the airflow mode to the turbulent quadratic. It has been established that it is advisable to use the energy criteria of nasal breathing, pneumatic power and energy of nasal breathing under the action of the corresponding odor vector for the assessment of respiratory impaired olfactory. To assess the respiratory impairment of olfactory, it is necessary to use the method in which an odor vector is installed in the air path of the rhinomanometer, and the patient is asked to perform breathing maneuvers with a consistent increase in respiration rate while fixing the time at which olfactory sensitivity is achieved and then determining the respiratory energy characteristics. A statistical processing of diagnostic results was carried out, which confirms the adequacy of the model of independent statistical verification and makes it possible to use this method for the functional diagnosis of respiratory-olfactory disorders and testing of respiratory-olfactory sensitivity. The probability index of the error of the second kind is 0.17.


Keywords

odorector; olfakometry; rhinomanometery; nasal breathing

Asakura K., Hayashi S.: Improvement of acquisition and analysis methods in multi-electrode array experiments with iPS cell-derived cardiomyocytes. Journal of Pharmacological and Toxicological Methods 75/2015, 17–26. DOI: https://doi.org/10.1016/j.vascn.2015.04.002

Berul C.I., Aronovitz M.J., Wang P.J., Mendelsohn M.E.: In vivo cardiac electrophysiology studies in the mouse. Circulation 94/1996, 2641–2648. DOI: https://doi.org/10.1161/01.CIR.94.10.2641

Chechel V., Vlasenko O., Rokunets I.: Patent No. 55671 UA, MPK А61В 5/04. Multichannel system for wireless transfer of action potentials in brain and spinal cord. National Pirogov Memorial Medical University 24/2010, 05836.

Ciaccio E.J., Saltman A.E., Hernandez O.M., Bornholdt R.J., Coromilas J.: Multichannel data acquisition system for mapping the electrical activity of the heart. Pacing and clinical electrophysiology 28/2005, 826–838. DOI: https://doi.org/10.1111/j.1540-8159.2005.00167.x

Deacon M., Singleton D., Szalkai N., Pasieczny R., Peacock C., Price D., Boyd J., Boyd H., Steidl-Nichols J.V., Williams C.: Early evaluation of compound QT prolongation effects: a predictive 384-well fluorescence polarization binding assay for measuring hERG blockade. Journal of pharmacological and toxicological methods 55/2007, 255–264. DOI: https://doi.org/10.1016/j.vascn.2006.09.003

Dutta S., Chang K.C., Beattie K.A, Sheng J., Tran P.N., Wu W.W., Wu M., Strauss D.G, Colatsky T., Li Z.: Optimization of an in silico cardiac cell model for proarrhythmia risk assessment. Frontiers in Physiology 23/2017, 616. DOI: https://doi.org/10.3389/fphys.2017.01025

Food and Drug Administration, HHS. ICH: S7B nonclinical evaluation of the potential for delayed ventricular repolarization (QT interval prolongation) by human pharmaceuticals. Fed. Regist. 70/2005, 61133-4.

Gintant G., Sager P.T., Stockbridge N.: Evolution of strategies to improve preclinical cardiac safety testing. Nature Reviews Drug Discovery 15/2016, 457–471. DOI: https://doi.org/10.1038/nrd.2015.34

Guth B.D.: Preclinical cardiovascular risk assessment in modern drug development. Toxicological Sciences 97/2007, 4–20. DOI: https://doi.org/10.1093/toxsci/kfm026

Henry P.D.: Comparative pharmacology of calcium antagonists: nifedipine, verapamil and diltiazem. The American journal of cardiology 46/1980, 1047–1058. DOI: https://doi.org/10.1016/0002-9149(80)90366-5

Hofer E., Keplinger F., Thurner T., Wiener T., Sanchez-Quintana D., Climent V., Plank G.: A new floating sensor array to detect electric near fields of beating heart preparations. Biosensors and Bioelectronics 21/2006, 2232–2239. DOI: https://doi.org/10.1016/j.bios.2005.11.010

Kawakami K., Nagatomo T., Abe H., Kikuchi K., Takemasa H., Anson B.D., Delisle B.P., January C.T., Nakashima Y.: Comparison of HERG channel blocking effects of various β blockers–implication for clinical strategy. British journal of pharmacology 147/2006, 642–652. DOI: https://doi.org/10.1038/sj.bjp.0706508

Lee W., Windley M.J., Vandenberg J.I., Hill A.P.: In Vitro and in Silico Risk Assessment in Acquired Long QT Syndrome: The Devil Is in the Details. Frontiers in physiology 8/2017. DOI: https://doi.org/10.3389/fphys.2017.00934

Malkin R.A., Pendley B.D.: Construction of a very high-density extracellular electrode array,” American Journal of Physiology-Heart and Circulatory Physiology 279/2000, 437–442. DOI: https://doi.org/10.1152/ajpheart.2000.279.1.H437

Meyer T., Boven K.H., Günther E., Fejtl M.: Micro-electrode arrays in cardiac safety pharmacology. Drug Safety 27/2004, 763–772. DOI: https://doi.org/10.2165/00002018-200427110-00002

Moroz V.M., Vlasenko O.V., Rokunets I.L., Chechel V.V., Yoltukhovskii M.V., Yankovskaya L.V.: Coupled Spike Activity in Micropopulations of Motor Cortex Neurons in Rats. Neurophysiology 42/2010, 110–117. DOI: https://doi.org/10.1007/s11062-010-9138-4

Okada J.I., Yoshinaga T., Kurokawa J., Washio T., Furukawa T., Sawada K., Sugiura S., Hisada T.: Screening system for drug-induced arrhythmogenic risk combining a patch clamp and heart simulator. Science advances 4/2015, 140–142. DOI: https://doi.org/10.1126/sciadv.1400142

Pavlov S.V., Barylo A.S., Kozlovska T.I., et al.: Analysis of microcirculatory disorders in inflammatory processes in the maxillofacial region on based of optoelectronic methods. Przegląd Elektrotechniczny 93(5)/2017, 114–117. DOI: https://doi.org/10.15199/48.2017.05.23

Pavlov S.V., Kozhemiako V.P., Kolesnik P.F., et al.: Physical principles of biomedical optics: monograph. VNTU, Vinnytsya 2010.

Pavlov S.V., Kozhemiako V.P., Petruk V.G., Kolesnik P.F.: Photoplethysmohrafic technologies of the cardiovascular control. Universum, Vinnitsa 2007.

Pavlov S.V., Kozlovska T.I., et al.: Calibration of the metrological characteristics of photoplethysmographic multispectral device for diagnosis the peripheral blood circulation. Przegląd Elektrotechniczny 93(5)/2017, 79–82. DOI: https://doi.org/10.15199/48.2017.05.15

Pavlov S.V., Tuzhanskyy S.E., Kozlovska T.I. , Kozak A.V.: A simulation model of distribution of optical radiation in biological tissues. Visnyk VNTU 3/2011, 191–195.

Pradhapan P., Kuusela J., Viik J., Aalto-Setälä K., Hyttinen J.: Cardiomyocyte MEA data analysis (Cardio MDA) – a novel field potential data analysis software for pluripotent stem cell derived cardiomyocytes. PloS one 8/2013, 73637. DOI: https://doi.org/10.1371/journal.pone.0073637

Rampe D., Brown A.M.: A history of the role of the hERG channel in cardiac risk assessment. Journal of pharmacological and toxicological methods 68/2013, 13–22. DOI: https://doi.org/10.1016/j.vascn.2013.03.005

Serkova V.K., Pavlov S.V., et al.: Medical expert system for assessment of coronary heart disease destabilization based on the analysis of the level of soluble vascular adhesion molecules. Proc. SPIE 10445/2017, 104453O. DOI: https://doi.org/10.1117/12.2280984

Singleton D.H., Boyd H., Steidl-Nichols J.V., Deacon M., de Groot M.J., Price D., Nettleton D.O., Wallace N.K., Troutman M.D., Williams C., Boyd J.G.: Fluorescently labeled analogues of dofetilide as high-affinity fluorescence polarization ligands for the human ether-a-go-go-related gene (hERG) channel. Journal of medicinal chemistry 28/2007, 2931–2941. DOI: https://doi.org/10.1021/jm0700565

Stett A., Egert U., Guenther E., Hofmann F., Meyer T., Nisch W., Haemmerle H.: Biological application of microelectrode arrays in drug discovery and basic research. Analytical and bioanalytical chemistry 377/2003, 486–495. DOI: https://doi.org/10.1007/s00216-003-2149-x

Valentin J.P., Hoffmann P., De Clerck F., Hammond T.G., Hondeghem L.: Review of the predictive value of the Langendorff heart model (Screenit system) in assessing the proarrhythmic potential of drugs. Journal of pharmacological and toxicological methods 49/2004, 171–181. DOI: https://doi.org/10.1016/j.vascn.2004.03.008

Vandenberg J.I., Varghese A., Lu Y., Bursill J.A., Mahaut-Smith M.P., Huang C.L.: Temperature dependence of human ether-a-go-go-related gene K+ currents. American Journal of Physiology-Cell Physiology 291/2006, 165–175. DOI: https://doi.org/10.1152/ajpcell.00596.2005

Vassilenko S., Valtchev, Teixeira J.P., Pavlov S.: Energy harvesting: an interesting topic for education programs in engineering specialities. Internet, Education, Science (IES-2016), 149–156.

Wójcik W., Smolarz A.: Information Technology in Medical Diagnostics. LondonTaylor & Francis Group CRC Press Reference, London 2017. DOI: https://doi.org/10.1201/9781315098050

Download

Published : 2019-09-26


Avrunin, O., Nosova, Y., Zlepko, S., Younouss Abdelhamid , I., & Shushliapina, N. (2019). ASSESSMENT OF THE DIAGNOSTIC VALUE OF THE METHOD OF COMPUTER OLFACTOMETRY. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 9(3), 18-21. https://doi.org/10.35784/iapgos.236

Oleg Avrunin  oleh.avrunin@nure.ua
Kharkiv National University of Radio Electronics, Kharkiv, Ukraine  Ukraine
http://orcid.org/0000-0002-6312-687X
Yana Nosova 
Kharkiv National University of Radio Electronics, Kharkiv, Ukraine  Ukraine
http://orcid.org/0000-0003-4310-5833
Sergii Zlepko 
Vinnytsia national Technical University, Vinnytsia, Ukraine  Ukraine
http://orcid.org/0000-0001-8849-4188
Ibrahim Younouss Abdelhamid  
Kharkiv National University of Radio Electronics, Kharkiv, Ukraine  Ukraine
http://orcid.org/0000-0003-2611-2417
Nataliia Shushliapina 
Kharkiv National Medical University, Kharkiv, Ukraine  Ukraine
http://orcid.org/0000-0002-6347-3150