ANALYSIS OF UPPER RESPIRATORY TRACT SEGMENTATION FEATURES TO DETERMINE NASAL CONDUCTANCE
Oleg Avrunin
oleh.avrunin@nure.uaKharkiv National University of Radio Electronics (Ukraine)
http://orcid.org/0000-0002-6312-687X
Yana Nosova
Kharkiv National University of Radio Electronics (Ukraine)
http://orcid.org/0000-0003-4310-5833
Nataliia Shushliapina
Kharkiv National Medical University (Ukraine)
http://orcid.org/0000-0002-6347-3150
Ibrahim Younouss Abdelhamid
Kharkiv National University of Radio Electronics (Ukraine)
http://orcid.org/0000-0003-2611-2417
Oleksandr Avrunin
Kharkiv National University of Radio Electronics (Ukraine)
http://orcid.org/0000-0002-5202-0770
Svetlana Kyrylashchuk
Vinnytsia National Technical University (Ukraine)
http://orcid.org/0000-0002-8972-3541
Olha Moskovchuk
Vinnytsia Mykhailo Kotsiubynskyi State Pedagogical University (Ukraine)
http://orcid.org/0000-0003-4568-1607
Orken Mamyrbayev
Institute of Information and Computational Technologies of the Kazakh National Technical University named after K. I. Satbayev (Kazakhstan)
http://orcid.org/0000-0001-8318-3794
Abstract
The paper examines the features of segmentation of the upper respiratory tract to determine nasal air conduction. 2D and 3D illustrations of the segmentation process and the obtained results are given. When forming an analytical model of the aerodynamics of the nasal cavity, the main indicator that characterizes the configuration of the nasal canal is the equivalent diameter, which is determined at each intersection of the nasal cavity. It is calculated based on the area and perimeter of the corresponding section of the nasal canal. When segmenting the nasal cavity, it is first necessary to eliminate air structures that do not affect the aerodynamics of the upper respiratory tract - these are, first of all, intact spaces of the paranasal sinuses, in which diffuse air exchange prevails. In the automatic mode, this is possible by performing the elimination of unconnected isolated areas and finding the difference coefficients of the areas connected by confluences with the nasal canal in the next step. High coefficients of difference of sections between intersections will indicate the presence of separated areas and contribute to their elimination. The complex configuration and high individual variability of the structures of the nasal cavity does not allow segmentation to be fully automated, but this approach contributes to the absence of interactive correction in 80% of tomographic datasets. The proposed method, which takes into account the intensity of the image elements close to the contour ones, allows to reduce the averaging error from tomographic reconstruction up to 2 times due to artificial sub-resolution. The perspective of the work is the development of methods for fully automatic segmentation of the structures of the nasal cavity, taking into account the individual anatomical variability of the upper respiratory tract.
Keywords:
aerodynamics of nasal breathing, nasal cavity, tomographic reconstruction, segmentation, upper respiratory tract, air conductionReferences
Aras A. et al.: Dimensional changes of the nasal cavity after transpalatal distraction using bone-borne distractor: an acoustic rhinometry and computed tomography evaluation. J. Oral Maxillofac. Surg. 68(7), 2010, 1487–1497.
DOI: https://doi.org/10.1016/j.joms.2009.09.079
Google Scholar
Avrunin O. G. et al.: Features of image segmentation of the upper respiratory tract for planning of rhinosurgical surgery. Paper presented at the 2019 IEEE 39th International Conference on Electronics and Nanotechnology, ELNANO 2019, 485–488.
DOI: https://doi.org/10.1109/ELNANO.2019.8783739
Google Scholar
Avrunin O. G. et al.: Principles of computer planning in the functional nasal surgery. Przeglad Elektrotechniczny 93(3), 2017, 140–143 [http://doi.org/10.15199/48.2017.03.32].
DOI: https://doi.org/10.15199/48.2017.03.32
Google Scholar
Avrunin O. G. et al.: Study of the air flow mode in the nasal cavity during a forced breath. Proc. of SPIE 10445, 2017 [http://doi.org/10.1117/12.2280941].
DOI: https://doi.org/10.1117/12.2280941
Google Scholar
Avrunin O. G. et al.: Possibilities of Automated Diagnostics of Odontogenic Sinusitis According to the Computer Tomography Data. Sensors 21, 1198, 2021 [http://doi.org/10.3390/s21041198].
DOI: https://doi.org/10.3390/s21041198
Google Scholar
Berger M. et al.: Agreement between rhinomanometry and computed tomography-based computational fluid dynamics. International Journal of Computer Assisted Radiology and Surgery 16(4), 2021, 629–638 [http://doi.org/10.1007/s11548-021-02332-1].
DOI: https://doi.org/10.1007/s11548-021-02332-1
Google Scholar
Cankurtaran M. et al.: Acoustic rhinometry in healthy humans: accuracy of area estimates and ability to quantify certain anatomic structures in the nasal cavity. Ann Otol. Rhinol. Laryngol. 116(12), 2007, 906–916.
DOI: https://doi.org/10.1177/000348940711601207
Google Scholar
Churchill S. E. et al.: Morphological Variation and Airflow Dynamics in the Human Nose. Am. J. Of Hum. Biol. 16, 2004, 625–638.
DOI: https://doi.org/10.1002/ajhb.20074
Google Scholar
Cilluffo G., et al.: Assessing repeatability and reproducibility of anterior active rhinomanometry (AAR) in children. BMC Medical Research Methodology 20(1), 2020 [http://doi.org/10.1186/s12874-020-00969-1].
DOI: https://doi.org/10.1186/s12874-020-00969-1
Google Scholar
Clement P. A.: Standardisation Committee on Objective Assessment of the Nasal Airway. Consensus report on 43, 2005, 169–179.
Google Scholar
Fyrmpas G. et al.: The value of bilateral simultaneous nasal spirometry in the assessment of patients undergoing. Rhinology 49(3), 2011, 297–303.
DOI: https://doi.org/10.4193/Rhino10.199
Google Scholar
Hsu Y. et al.: Role of rhinomanometry in the prediction of therapeutic positive airway pressure for obstructive sleep apnea. Respiratory Research 21, 2020, 115 [http://doi.org/10.1186/s12931-020-01382-4].
DOI: https://doi.org/10.1186/s12931-020-01382-4
Google Scholar
Kang Y. J. et al.: The diagnostic value of detecting sudden smell loss among asymptomatic COVID-19 patients in early stage: The possible early sign of COVID-19. Auris Nasus Larynx 47(4), 2020, 565–573 [http://doi.org/10.1016/j.anl.2020.05.020].
DOI: https://doi.org/10.1016/j.anl.2020.05.020
Google Scholar
Kirichenko L. et al.: Machine learning in classification time series with fractal properties. Data 4(1), 2019, 5 [http://doi.org/10.3390/data4010005].
DOI: https://doi.org/10.3390/data4010005
Google Scholar
Kuo C. J. et al.: Application of intelligent automatic segmentation and 3D reconstruction of inferior turbinate and maxillary sinus from computed tomography and analyze the relationship between volume and nasal lesion. Biomedical Signal Processing and Control 57, 2020, 101660 [http://doi.org/10.1016/j.bspc.2019.101660].
DOI: https://doi.org/10.1016/j.bspc.2019.101660
Google Scholar
Li C. et al.: Nasal structural and aerodynamic features that may benefit normal olfactory sensitivity. Chemical Senses 43(4), 2018, 229–237.
DOI: https://doi.org/10.1093/chemse/bjy013
Google Scholar
Mlynski G. et al.: Correlation of nasal morphology and respiratory function. Rhinology 39(4), 2001, 197–201.
Google Scholar
Moghaddam M. G.et al.: Virtual septoplasty: A method to predict surgical outcomes for patients with nasal airway obstruction. International Journal of Computer Assisted Radiology and Surgery 15(4), 2020, 725–735 [http://doi.org/10.1007/s11548-020-02124-z].
DOI: https://doi.org/10.1007/s11548-020-02124-z
Google Scholar
Ohlmeyer S. et al.: Cone beam CT imaging of the paranasal region with a multipurpose X-ray system-image quality and radiation exposure. Applied Sciences 10(17), 2020, 5876 [http://doi.org/10.3390/app10175876].
DOI: https://doi.org/10.3390/app10175876
Google Scholar
Ott K.: Computed tomography of adult rhinosinusitis. Radiologic Technology 89(6), 2018, 571–593.
Google Scholar
Paul M. A. et al.: Assessment of functional rhinoplasty with spreader grafting using acoustic rhinomanometry and validated outcome measurements. Plastic and Reconstructive Surgery – Global Open. 6(3), 2018, p e1615 [http://doi.org/10.1097/GOX.0000000000001615].
DOI: https://doi.org/10.1097/GOX.0000000000001615
Google Scholar
Pavlov S. V. et al.: Information Technology in Medical Diagnostics. CRC Press, 2017.
Google Scholar
Radulesco T. et al.: Correlations between computational fluid dynamics and clinical evaluation of nasal airway obstruction due to septal deviation: An observational study. Clinical Otolaryngology 44(4), 2019, 603–611 [http://doi.org/10.1111/coa.13344].
DOI: https://doi.org/10.1111/coa.13344
Google Scholar
Romanyuk S. et al.: Using lights in a volume-oriented rendering. Proc. of SPIE 10445, 2017, 104450U.
Google Scholar
Rovira J. R. et al.: Methods and resources for imaging polarimetry. Proc. of SPIE 8698, 2012, 86980T.
DOI: https://doi.org/10.1117/12.2019732
Google Scholar
Tang H. et al.: Dynamic Analysis of Airflow Features in a 3D Real-Anatomical Geometry of the Human Nasal Cavity. 15th Australasian Fluid Mechanics Conference, University of Sydney, Australia, 2004.
Google Scholar
Toriumi D.M.: Assessment of rhinoplasty techniques by overlay of before-and-after 3D images. Facial Plast Surg Clin North Am. 19(4), 2011, 711–723.
DOI: https://doi.org/10.1016/j.fsc.2011.07.011
Google Scholar
Valtonen O. et al.: Three-dimensional printing of the nasal cavities for clinical experiments. Scientific Reports 10, 2020, 502 [http://doi.org/10.1038/s41598-020-57537-2].
DOI: https://doi.org/10.1038/s41598-020-57537-2
Google Scholar
Vogt K., Jalowayski A. A.: 4-Phase-Rhinomanometry Basics and Practice. Rhinology 21, 2010, 1–50.
Google Scholar
Wójcik W., Pavlov S., Kalimoldayev M.: Information Technology in Medical Diagnostics II. London: Taylor & Francis Group, CRC Press, Balkema book, 2019.
DOI: https://doi.org/10.1201/9780429057618
Google Scholar
Zhang G. et al.: Correlation between subjective assessment and objective measurement of nasal obstruction. Zhonghua 43(7), 2008, 484–489.
Google Scholar
Authors
Oleg Avruninoleh.avrunin@nure.ua
Kharkiv National University of Radio Electronics Ukraine
http://orcid.org/0000-0002-6312-687X
Authors
Yana NosovaKharkiv National University of Radio Electronics Ukraine
http://orcid.org/0000-0003-4310-5833
Authors
Nataliia ShushliapinaKharkiv National Medical University Ukraine
http://orcid.org/0000-0002-6347-3150
Authors
Ibrahim Younouss AbdelhamidKharkiv National University of Radio Electronics Ukraine
http://orcid.org/0000-0003-2611-2417
Authors
Oleksandr AvruninKharkiv National University of Radio Electronics Ukraine
http://orcid.org/0000-0002-5202-0770
Authors
Svetlana KyrylashchukVinnytsia National Technical University Ukraine
http://orcid.org/0000-0002-8972-3541
Authors
Olha MoskovchukVinnytsia Mykhailo Kotsiubynskyi State Pedagogical University Ukraine
http://orcid.org/0000-0003-4568-1607
Authors
Orken MamyrbayevInstitute of Information and Computational Technologies of the Kazakh National Technical University named after K. I. Satbayev Kazakhstan
http://orcid.org/0000-0001-8318-3794
Statistics
Abstract views: 226PDF downloads: 159
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Most read articles by the same author(s)
- Roman Kvуetnyy, Yuriy Bunyak, Olga Sofina, Oleksandr Kaduk, Orken Mamyrbayev, Vladyslav Baklaiev, Bakhyt Yeraliyeva, ADVERTISING BIDDING OPTIMIZATION BY TARGETING BASED ON SELF-LEARNING DATABASE , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 13 No. 4 (2023)
- Marko Andrushchenko, Karina Selivanova, Oleg Avrunin, Dmytro Palii, Sergii Tymchyk , Dana Turlykozhayeva, HAND MOVEMENT DISORDERS TRACKING BY SMARTPHONE BASED ON COMPUTER VISION METHODS , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 14 No. 2 (2024)
- Oleg Avrunin, Yana Nosova, Ibrahim Younouss Abdelhamid, Oleksandr Gryshkov, Birgit Glasmacher, USING 3D PRINTING TECHNOLOGY TO FULL-SCALE SIMULATION OF THE UPPER RESPIRATORY TRACT , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 9 No. 4 (2019)
- Liudmyla Shkilniak, Waldemar Wójcik, Sergii Pavlov, Oleg Vlasenko, Tetiana Kanishyna, Irina Khomyuk, Oleh Bezverkhyi, Sofia Dembitska, Orken Mamyrbayev, Aigul Iskakova, EXPERT FUZZY SYSTEMS FOR EVALUATION OF INTENSITY OF REACTIVE EDEMA OF SOFT TISSUES IN PATIENTS WITH DIABETES , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 12 No. 3 (2022)
- Maksym Tymkovych, Oleg Avrunin, Karina Selivanova, Alona Kolomiiets, Taras Bednarchyk, Saule Smailova, CORRESPONDENCE MATCHING IN 3D MODELS FOR 3D HAND FITTING , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 14 No. 1 (2024)
- Oleg Avrunin, Yana Nosova, Sergii Zlepko, Ibrahim Younouss Abdelhamid , Nataliia Shushliapina, ASSESSMENT OF THE DIAGNOSTIC VALUE OF THE METHOD OF COMPUTER OLFACTOMETRY , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 9 No. 3 (2019)
- Veronika Cherkashina, Svitlana Litvinchuk, Vladyslav Lesko, Svetlana Kravets, Volodymyr Netrebskiy, Olena Sikorska, Orken Mamyrbayev, Baglan Imanbek , STUDY OF THE ELECTROMAGNETIC IMPACT OF THE OVERHEAD TRANSMISSION LINES OF 330 KV ON ECOLOGICAL SYSTEMS , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 12 No. 2 (2022)
- Alexander Litvinenko, Natalya Litvinenko, Orken Mamyrbayev, Assem Shayakhmetova, GENERATIONS IN BAYESIAN NETWORKS , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 9 No. 3 (2019)
- Nataliaya Kosulina, Stanislav Kosulin, Kostiantyn Korshunov, Tetyana Nosova, Yana Nosova, DETERMINATION OF HYDRODYNAMIC PARAMETERS OF THE SEALED PRESSURE EXTRACTOR , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 11 No. 2 (2021)
- Valerіi Kryvonosov, Oleg Avrunin, Serhii Sander, Volodymyr Pavlov, Liliia Martyniuk, Bagashar Zhumazhanov, A USAGE OF THE IMPEDANCE METHOD FOR DETECTING CIRCULATORY DISORDERS TO DETERMINE THE DEGREE OF LIMB ISCHEMIA , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 13 No. 4 (2023)