ANALYSIS OF UPPER RESPIRATORY TRACT SEGMENTATION FEATURES TO DETERMINE NASAL CONDUCTANCE

Oleg Avrunin

oleh.avrunin@nure.ua
Kharkiv National University of Radio Electronics (Ukraine)
http://orcid.org/0000-0002-6312-687X

Yana Nosova


Kharkiv National University of Radio Electronics (Ukraine)
http://orcid.org/0000-0003-4310-5833

Nataliia Shushliapina


Kharkiv National Medical University (Ukraine)
http://orcid.org/0000-0002-6347-3150

Ibrahim Younouss Abdelhamid


Kharkiv National University of Radio Electronics (Ukraine)
http://orcid.org/0000-0003-2611-2417

Oleksandr Avrunin


Kharkiv National University of Radio Electronics (Ukraine)
http://orcid.org/0000-0002-5202-0770

Svetlana Kyrylashchuk


Vinnytsia National Technical University (Ukraine)
http://orcid.org/0000-0002-8972-3541

Olha Moskovchuk


Vinnytsia Mykhailo Kotsiubynskyi State Pedagogical University (Ukraine)
http://orcid.org/0000-0003-4568-1607

Orken Mamyrbayev


Institute of Information and Computational Technologies of the Kazakh National Technical University named after K. I. Satbayev (Kazakhstan)
http://orcid.org/0000-0001-8318-3794

Abstract

The paper examines the features of segmentation of the upper respiratory tract to determine nasal air conduction. 2D and 3D illustrations of the segmentation process and the obtained results are given. When forming an analytical model of the aerodynamics of the nasal cavity, the main indicator that characterizes the configuration of the nasal canal is the equivalent diameter, which is determined at each intersection of the nasal cavity. It is calculated based on the area and perimeter of the corresponding section of the nasal canal. When segmenting the nasal cavity, it is first necessary to eliminate air structures that do not affect the aerodynamics of the upper respiratory tract - these are, first of all, intact spaces of the paranasal sinuses, in which diffuse air exchange prevails. In the automatic mode, this is possible by performing the elimination of unconnected isolated areas and finding the difference coefficients of the areas connected by confluences with the nasal canal in the next step. High coefficients of difference of sections between intersections will indicate the presence of separated areas and contribute to their elimination. The complex configuration and high individual variability of the structures of the nasal cavity does not allow segmentation to be fully automated, but this approach contributes to the absence of interactive correction in 80% of tomographic datasets. The proposed method, which takes into account the intensity of the image elements close to the contour ones, allows to reduce the averaging error from tomographic reconstruction up to 2 times due to artificial sub-resolution. The perspective of the work is the development of methods for fully automatic segmentation of the structures of the nasal cavity, taking into account the individual anatomical variability of the upper respiratory tract.


Keywords:

aerodynamics of nasal breathing, nasal cavity, tomographic reconstruction, segmentation, upper respiratory tract, air conduction

Aras A. et al.: Dimensional changes of the nasal cavity after transpalatal distraction using bone-borne distractor: an acoustic rhinometry and computed tomography evaluation. J. Oral Maxillofac. Surg. 68(7), 2010, 1487–1497.
DOI: https://doi.org/10.1016/j.joms.2009.09.079   Google Scholar

Avrunin O. G. et al.: Features of image segmentation of the upper respiratory tract for planning of rhinosurgical surgery. Paper presented at the 2019 IEEE 39th International Conference on Electronics and Nanotechnology, ELNANO 2019, 485–488.
DOI: https://doi.org/10.1109/ELNANO.2019.8783739   Google Scholar

Avrunin O. G. et al.: Principles of computer planning in the functional nasal surgery. Przeglad Elektrotechniczny 93(3), 2017, 140–143 [http://doi.org/10.15199/48.2017.03.32].
DOI: https://doi.org/10.15199/48.2017.03.32   Google Scholar

Avrunin O. G. et al.: Study of the air flow mode in the nasal cavity during a forced breath. Proc. of SPIE 10445, 2017 [http://doi.org/10.1117/12.2280941].
DOI: https://doi.org/10.1117/12.2280941   Google Scholar

Avrunin O. G. et al.: Possibilities of Automated Diagnostics of Odontogenic Sinusitis According to the Computer Tomography Data. Sensors 21, 1198, 2021 [http://doi.org/10.3390/s21041198].
DOI: https://doi.org/10.3390/s21041198   Google Scholar

Berger M. et al.: Agreement between rhinomanometry and computed tomography-based computational fluid dynamics. International Journal of Computer Assisted Radiology and Surgery 16(4), 2021, 629–638 [http://doi.org/10.1007/s11548-021-02332-1].
DOI: https://doi.org/10.1007/s11548-021-02332-1   Google Scholar

Cankurtaran M. et al.: Acoustic rhinometry in healthy humans: accuracy of area estimates and ability to quantify certain anatomic structures in the nasal cavity. Ann Otol. Rhinol. Laryngol. 116(12), 2007, 906–916.
DOI: https://doi.org/10.1177/000348940711601207   Google Scholar

Churchill S. E. et al.: Morphological Variation and Airflow Dynamics in the Human Nose. Am. J. Of Hum. Biol. 16, 2004, 625–638.
DOI: https://doi.org/10.1002/ajhb.20074   Google Scholar

Cilluffo G., et al.: Assessing repeatability and reproducibility of anterior active rhinomanometry (AAR) in children. BMC Medical Research Methodology 20(1), 2020 [http://doi.org/10.1186/s12874-020-00969-1].
DOI: https://doi.org/10.1186/s12874-020-00969-1   Google Scholar

Clement P. A.: Standardisation Committee on Objective Assessment of the Nasal Airway. Consensus report on 43, 2005, 169–179.
  Google Scholar

Fyrmpas G. et al.: The value of bilateral simultaneous nasal spirometry in the assessment of patients undergoing. Rhinology 49(3), 2011, 297–303.
DOI: https://doi.org/10.4193/Rhino10.199   Google Scholar

Hsu Y. et al.: Role of rhinomanometry in the prediction of therapeutic positive airway pressure for obstructive sleep apnea. Respiratory Research 21, 2020, 115 [http://doi.org/10.1186/s12931-020-01382-4].
DOI: https://doi.org/10.1186/s12931-020-01382-4   Google Scholar

Kang Y. J. et al.: The diagnostic value of detecting sudden smell loss among asymptomatic COVID-19 patients in early stage: The possible early sign of COVID-19. Auris Nasus Larynx 47(4), 2020, 565–573 [http://doi.org/10.1016/j.anl.2020.05.020].
DOI: https://doi.org/10.1016/j.anl.2020.05.020   Google Scholar

Kirichenko L. et al.: Machine learning in classification time series with fractal properties. Data 4(1), 2019, 5 [http://doi.org/10.3390/data4010005].
DOI: https://doi.org/10.3390/data4010005   Google Scholar

Kuo C. J. et al.: Application of intelligent automatic segmentation and 3D reconstruction of inferior turbinate and maxillary sinus from computed tomography and analyze the relationship between volume and nasal lesion. Biomedical Signal Processing and Control 57, 2020, 101660 [http://doi.org/10.1016/j.bspc.2019.101660].
DOI: https://doi.org/10.1016/j.bspc.2019.101660   Google Scholar

Li C. et al.: Nasal structural and aerodynamic features that may benefit normal olfactory sensitivity. Chemical Senses 43(4), 2018, 229–237.
DOI: https://doi.org/10.1093/chemse/bjy013   Google Scholar

Mlynski G. et al.: Correlation of nasal morphology and respiratory function. Rhinology 39(4), 2001, 197–201.
  Google Scholar

Moghaddam M. G.et al.: Virtual septoplasty: A method to predict surgical outcomes for patients with nasal airway obstruction. International Journal of Computer Assisted Radiology and Surgery 15(4), 2020, 725–735 [http://doi.org/10.1007/s11548-020-02124-z].
DOI: https://doi.org/10.1007/s11548-020-02124-z   Google Scholar

Ohlmeyer S. et al.: Cone beam CT imaging of the paranasal region with a multipurpose X-ray system-image quality and radiation exposure. Applied Sciences 10(17), 2020, 5876 [http://doi.org/10.3390/app10175876].
DOI: https://doi.org/10.3390/app10175876   Google Scholar

Ott K.: Computed tomography of adult rhinosinusitis. Radiologic Technology 89(6), 2018, 571–593.
  Google Scholar

Paul M. A. et al.: Assessment of functional rhinoplasty with spreader grafting using acoustic rhinomanometry and validated outcome measurements. Plastic and Reconstructive Surgery – Global Open. 6(3), 2018, p e1615 [http://doi.org/10.1097/GOX.0000000000001615].
DOI: https://doi.org/10.1097/GOX.0000000000001615   Google Scholar

Pavlov S. V. et al.: Information Technology in Medical Diagnostics. CRC Press, 2017.
  Google Scholar

Radulesco T. et al.: Correlations between computational fluid dynamics and clinical evaluation of nasal airway obstruction due to septal deviation: An observational study. Clinical Otolaryngology 44(4), 2019, 603–611 [http://doi.org/10.1111/coa.13344].
DOI: https://doi.org/10.1111/coa.13344   Google Scholar

Romanyuk S. et al.: Using lights in a volume-oriented rendering. Proc. of SPIE 10445, 2017, 104450U.
  Google Scholar

Rovira J. R. et al.: Methods and resources for imaging polarimetry. Proc. of SPIE 8698, 2012, 86980T.
DOI: https://doi.org/10.1117/12.2019732   Google Scholar

Tang H. et al.: Dynamic Analysis of Airflow Features in a 3D Real-Anatomical Geometry of the Human Nasal Cavity. 15th Australasian Fluid Mechanics Conference, University of Sydney, Australia, 2004.
  Google Scholar

Toriumi D.M.: Assessment of rhinoplasty techniques by overlay of before-and-after 3D images. Facial Plast Surg Clin North Am. 19(4), 2011, 711–723.
DOI: https://doi.org/10.1016/j.fsc.2011.07.011   Google Scholar

Valtonen O. et al.: Three-dimensional printing of the nasal cavities for clinical experiments. Scientific Reports 10, 2020, 502 [http://doi.org/10.1038/s41598-020-57537-2].
DOI: https://doi.org/10.1038/s41598-020-57537-2   Google Scholar

Vogt K., Jalowayski A. A.: 4-Phase-Rhinomanometry Basics and Practice. Rhinology 21, 2010, 1–50.
  Google Scholar

Wójcik W., Pavlov S., Kalimoldayev M.: Information Technology in Medical Diagnostics II. London: Taylor & Francis Group, CRC Press, Balkema book, 2019.
DOI: https://doi.org/10.1201/9780429057618   Google Scholar

Zhang G. et al.: Correlation between subjective assessment and objective measurement of nasal obstruction. Zhonghua 43(7), 2008, 484–489.
  Google Scholar

Download


Published
2022-12-30

Cited by

Avrunin, O., Nosova, Y., Shushliapina, N., Abdelhamid, I. Y., Avrunin, O., Kyrylashchuk, S., … Mamyrbayev, O. (2022). ANALYSIS OF UPPER RESPIRATORY TRACT SEGMENTATION FEATURES TO DETERMINE NASAL CONDUCTANCE. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 12(4), 35–40. https://doi.org/10.35784/iapgos.3274

Authors

Oleg Avrunin 
oleh.avrunin@nure.ua
Kharkiv National University of Radio Electronics Ukraine
http://orcid.org/0000-0002-6312-687X

Authors

Yana Nosova 

Kharkiv National University of Radio Electronics Ukraine
http://orcid.org/0000-0003-4310-5833

Authors

Nataliia Shushliapina 

Kharkiv National Medical University Ukraine
http://orcid.org/0000-0002-6347-3150

Authors

Ibrahim Younouss Abdelhamid 

Kharkiv National University of Radio Electronics Ukraine
http://orcid.org/0000-0003-2611-2417

Authors

Oleksandr Avrunin 

Kharkiv National University of Radio Electronics Ukraine
http://orcid.org/0000-0002-5202-0770

Authors

Svetlana Kyrylashchuk 

Vinnytsia National Technical University Ukraine
http://orcid.org/0000-0002-8972-3541

Authors

Olha Moskovchuk 

Vinnytsia Mykhailo Kotsiubynskyi State Pedagogical University Ukraine
http://orcid.org/0000-0003-4568-1607

Authors

Orken Mamyrbayev 

Institute of Information and Computational Technologies of the Kazakh National Technical University named after K. I. Satbayev Kazakhstan
http://orcid.org/0000-0001-8318-3794

Statistics

Abstract views: 219
PDF downloads: 152


Most read articles by the same author(s)