USING 3D PRINTING TECHNOLOGY TO FULL-SCALE SIMULATION OF THE UPPER RESPIRATORY TRACT


Abstract

The project "Implementation of rapid prototyping for modelling the upper respiratory tract in normal and typical pathologies" investigates the urgent problem of improving the reliability of diagnosis and effectiveness of treatment of disorders of the nasal breathing. Possibilities of modern 3D-printing technology for creation of individual natural anatomical models of the upper respiratory tract and determination of their aerodynamic characteristics are considered. The characteristics of the laminar boundary layer of the air flow in the parietal region of the nasal cavity are investigated under different modes of breathing in normal and with typical disorders of the nasal breathing. The concept of investigation of the aerodynamic indices of the anatomical structures of the respiratory system by the results of test tests of individual full-scale 3D models, obtained by the data of spiral computed tomography, is being developed. Theoretical bases of the method of computer planning of restorative rhinosurgical interventions in patients with chronic diseases of the nasal cavity are grounded, based on the change of the configuration of the anatomical structures of the nasal cavity taking into account the aerodynamic parameters of respiration. Modern distance learning and testing tools are being created to demonstrate the technology developed, to provide theoretical knowledge, practical skills and to solve situational tasks for a wide range of specialists. Development and research of natural patterns of the upper respiratory tract allows for supplementing and expanding the knowledge about the aerodynamic characteristics of the nasal cavity, to make decisions about therapy in a short period of time. Experience of the Laboratory of the Institute for Multiphase Processes (IMP) of the Leibniz Universität Hannover (LUH) in the development and use of rapid prototyping capabilities in biotechnology will provide technical support to the project.


Keywords

rhinomanometery; nasal breathing; full-scale models; tomography; virtual model

Abizov R. A., Pavlishin Yu. D.: Disturbances in the functions of the olfactory analyzer and practical aspects of their research methodology and further tactics of conducting such patients. Family Medicine 4(48), 2013, 100–102.

Al_Omari A. K., Saied H. F. I., Avrunin O. G.: Analysis of Changes of the Hydraulic Diameter and Determination of the Air Flow Modes in the Nasal Cavity. Image Processing and Communications Challenges 3. Advances in Intelligent and Soft Computing 102, 2011, 303-310 [DOI: 10.1007/978-3-642-23154-4_34]. DOI: https://doi.org/10.1007/978-3-642-23154-4_34

Aras A., Akay M., Cukurova I. et al.: Dimensional changes of the nasal cavity after transpalatal distraction using bone-borne distractor: an acoustic rhinometry and computed tomography evaluation. J. Oral Maxillofac. Surg. 68(7), 2010, 1487–1497. DOI: https://doi.org/10.1016/j.joms.2009.09.079

Cole P., Fenton R.: Contemporary rhinomanometry. Otolaryngol. 35(2), 2006, 83–87. DOI: https://doi.org/10.2310/7070.2005.5016

Fyrmpas G., Kyrmizakis D., Vital V., Constantinidis J.: The value of bilateral simultaneous nasal spirometry in the assessment of patients undergoing septoplasty. Rhinology 49(3), 2011, 297–303.

Govidaraj S.: Endoscopic sinus surgery: evolution and technical innovations. J. Laryngol. Otol. 24(3), 2010, 242–250. DOI: https://doi.org/10.1017/S0022215109991368

Halawi A. M., Smith S. S., Chandra R. K.: Chronic rhinosinusitis: epidemiology and cost. Allergy Asthma Proc. 34(4), 2013, 328–334. DOI: https://doi.org/10.2500/aap.2013.34.3675

Ismail Saied H. F., Al_Omari A. K., Avrunin O. G.: An Attempt of the Determination of Aerodynamic Characteristics of Nasal Airways. Image Processing and Communications Challenges 3. Advances in Intelligent and Soft Computing 102, 2011, 311–322, [DOI: 10.1007/978-3-642-23154-4_35]. DOI: https://doi.org/10.1007/978-3-642-23154-4_35

Nosova Ya. V., Faruk Kh. I., Avrunin O. G.: A tool for researching respiratory and olfaction disorders. Telecommunications and Radio Engineering 77(15), 2018, 1389–1395, [DOI: 10.1615/TelecomRadEng.v77.i15.90]. DOI: https://doi.org/10.1615/TelecomRadEng.v77.i15.90

Tingelhoff K., Moral A. I., Kunkel M. et al.: Comparison between manual and semi–automatic segmentation of nasal cavity and paranasal sinuses from CT images. 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 5505–5508, [DOI: 10.1109/IEMBS.2007.4353592]. DOI: https://doi.org/10.1109/IEMBS.2007.4353592

Vogt K., Jalowayski A. A.: 4-Phase-Rhinomanometry Basics and Practice. Rhinology 21, 2010, 1–50.

Wójcik W., Pavlov S., Kalimoldayev M.: Information Technology in Medical Diagnostics II. Taylor & Francis Group, CRC Press, London 2019, [DOI: 10.1201/9780429057618]. DOI: https://doi.org/10.1201/9780429057618

Zambetti G., Moresi M., Romeo R., Filiaci F.: Study and application of a mathematical model for the provisional assessment of areas and nasal resistance, obtained using acoustic rhinometry and active anterior rhinomanometry. Clin. Otolaryngol. Allied Sci. 26(4), 2001, 286–293. DOI: https://doi.org/10.1046/j.1365-2273.2001.00470.x

Zhang G., Fenton R., Rival R., Solomon P., Cole P., Li Y.: Correlation between subjective assessment and objective measurement of nasal obstruction. Chinese journal of otorhinolaryngology head and neck surgery 43(7), 2008, 484–489.

Zhang G., Solomon P., Rival R. et al.: Nasal airway volume and resistance to airflow. Am. J. Rhinol. 22(4), 2008, 371–375. DOI: https://doi.org/10.2500/ajr.2008.22.3187

Download

Published : 2019-12-15


Avrunin, O., Nosova, Y., Younouss Abdelhamid, I., Gryshkov, O., & Glasmacher, B. (2019). USING 3D PRINTING TECHNOLOGY TO FULL-SCALE SIMULATION OF THE UPPER RESPIRATORY TRACT . Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 9(4), 60-63. https://doi.org/10.35784/iapgos.681

Oleg Avrunin  oleh.avrunin@nure.ua
Kharkiv National University of Radio Electronics  Ukraine
http://orcid.org/0000-0002-6312-687X
Yana Nosova 
Kharkiv National University of Radio Electronics  Ukraine
http://orcid.org/0000-0003-4310-5833
Ibrahim Younouss Abdelhamid 
Kharkiv National University of Radio Electronics  Ukraine
http://orcid.org/0000-0003-2611-2417
Oleksandr Gryshkov 
Leibniz University of Hannover, Institute for Multiphase Processes  Germany
http://orcid.org/0000-0002-3116-8792
Birgit Glasmacher 
Leibniz University of Hannover, Institute for Multiphase Processes  Germany
http://orcid.org/0000-0002-2452-1666