A USAGE OF THE IMPEDANCE METHOD FOR DETECTING CIRCULATORY DISORDERS TO DETERMINE THE DEGREE OF LIMB ISCHEMIA
Valerіi Kryvonosov
yhtverf007@ukr.netNational University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine (Ukraine)
https://orcid.org/0000-0002-8219-021X
Oleg Avrunin
Kharkiv National University of Radio Electronics, Kharkiv, Ukraine (Ukraine)
https://orcid.org/0000-0002-6312-687X
Serhii Sander
Vinnitsia National Medical University named after M.I. Pirogov, Vinnytsia, Ukraine (Ukraine)
Volodymyr Pavlov
Vinnytsia National Technical University, Vinnytsia, Ukraine (Ukraine)
https://orcid.org/0000-0002-0717-7082
Liliia Martyniuk
National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine (Ukraine)
https://orcid.org/0009-0007-3852-5610
Bagashar Zhumazhanov
Institute of Information and Computing Technologies of the CS MES, Republic Kazahstan (Kazakhstan)
https://orcid.org/0000-0002-5035-9076
Abstract
New engineering technologies allow the creation of diagnostic devices for predicting the development of acute tissue ischemia of the extremities and determining the residual time until the removal of the tourniquet, and solving these tasks is particularly relevant during military actions. Acute limb ischemia is a sudden critical decrease in perfusion that threatens the viability of the limb. The incidence of this condition is 1.5 cases per 10 000 people per year. Acute ischemia occurs due to the blockage of blood flow in major arteries (embolism, thrombosis, trauma), leading to the cessation of adequate blood supply to metabolically active tissues of the limb, including the skin, muscles, and nerve endings. To address these issues, the article analyzes the changes in the impedance of biological tissue. The introduction and use of the coefficient of relative electrical conductivity, denoted as k, as a diagnostic criterion parameter, are justified. Experimental studies of changes in the coefficient of relative electrical conductivity k were conducted, confirming that the transition from exponential to linear dependencies of the coefficient establishes the degree of viability of the biological cell (tissue) and the moment of occurrence of reperfusion syndrome. It has been established that a deviation of the value of k by 10–15% from its unit value diagnoses the initial process of blood perfusion impairment and the development of ischemic tissue disease. The rate of change of k serves as a criterion for predicting the progression of the disease and as a corrective factor for therapeutic treatment.
Keywords:
ischemic tissue disease, perfusion, reperfusion syndrome, tourniquet, transient process, ionization, disease progression diagnosis, forecastingReferences
Bera T. K.: Bioelectrical Impedance and The Frequency Dependent Current Conduction Through Biological Tissues: A Short Review. IOP Conference Series Materials Science and Engineering 331(1), 2018, 012005.
DOI: https://doi.org/10.1088/1757-899X/331/1/012005
Google Scholar
Bera T. K.: Methods of bioelectrical impedance for non-invasive health monitoring. Review article. 2014, 381251.
DOI: https://doi.org/10.1155/2014/381251
Google Scholar
Blaisdell F. W.: The pathophysiology of skeletal muscle ischemia and the reperfusion syndrome: a review, Cardiovasc. Surg., 10(6), 2002, 620–630.
DOI: https://doi.org/10.1016/S0967-2109(02)00070-4
Google Scholar
Bosboom E. M., Hesselink M. K., Oomens C. W., Bouten C. V., Drost M. R., Baaijens F. P.: Passive transverse mechanical properties of skeletal muscle under in vivo compression. J Biomech, Oct 34(10), 2001, 1365–1368.
DOI: https://doi.org/10.1016/S0021-9290(01)00083-5
Google Scholar
Bouten C. V. C., Breuls R. G. M., Peeters E. A. G., Oomens C. W. J., Baaijens F. P. T.: In vitro models to study compressive strain-induced muscle cell damage. Biorheology 40(1–3), 2003, 383–388.
Google Scholar
Didukh V. D.: Biological physics with physical methods of analysis: teaching. Village, Ternopil, 2021.
Google Scholar
European Convention "On the Protection of Vertebrate Animals Used for Research and Other Scientific Purposes". Strasbourg, 1986.
Google Scholar
Frink M., Lechler P., Debus F., Ruchholtz S.: Multiple trauma and emergency room management. Dtsch. Arztebl. Int 114(29–30), 2017, 497–503.
DOI: https://doi.org/10.3238/arztebl.2017.0497
Google Scholar
Jiang Z., Yao J., Wang L., Wu H., Huang J., Zhao T., Takei M.: Development of a portable electrochemical impedance spectroscopy system for bio-detection. IEEE Sensors Journal, 19(15), 2019, 5979–5987 [http://doi.org/10.1109/JSEN.2019.2911718].
DOI: https://doi.org/10.1109/JSEN.2019.2911718
Google Scholar
Katelyan O. V. et al.: Study of the peripheral blood circulation of an abdominal wall using optoelectronic plethysmograph. Information Technology in Medical Diagnostics II. CRC Press, Balkema book, Taylor & Francis Group, London, 2019, 119–125.
DOI: https://doi.org/10.1201/9780429057618-15
Google Scholar
Koutsouras D. A., Lingstedt L. V., Lieberth K., Reinholz J., Mailänder V., Blom P. W. M., Gkoupidenis P.: Probing the impedance of a biological tissue with PEDOT:PSS-Coated metal electrodes: Effect of electrode size on sensing efficiency. Adv. Healthcare Mater. 8, 2019, 1901215 [http://doi.org/10.1002/adhm.201901215].
DOI: https://doi.org/10.1002/adhm.201901215
Google Scholar
Kozlovska T. I. et al.: Device to determine the level of peripheral blood circulation and saturation. Proc. SPIE 10031, 2016, 100312Z.
DOI: https://doi.org/10.1117/12.2249131
Google Scholar
Krivonosov V. E., Pavlov S. V., Sander S. V., Martyniuk L. V.: Method of detection and control of the development of ischemia of biological tissue. Patent No. 118335, dated 11.05.2023.
Google Scholar
Kryvonosov V., Prudnikova N., Martyniuk L.: Justification of the electrical scheme of biological tissue replacementunder the action of DC voltage. Machinery & Energetics 13(4), 2022.
DOI: https://doi.org/10.31548/machenergy.13(4).2022.60-71
Google Scholar
Law of Ukraine No. 3447-VI "On the Protection of Animals from Cruelty", October 16, 2012.
Google Scholar
Maegele M., Spinella P., Schöchl H.: The acute coagulopathy of trauma: mechanisms and tools for risk stratification. Shock 38, 2012, 450–458.
DOI: https://doi.org/10.1097/SHK.0b013e31826dbd23
Google Scholar
Mansoorifar A., Koklu A., Shihong M., Raj G. V., Beskok A.: Electrical Impedance Measurements of Biological Cells in Response to External Stimuli. Anal. Chem. 90(7), 2018, 4320–4327.
DOI: https://doi.org/10.1021/acs.analchem.7b05392
Google Scholar
Martsenyuk V. P.: Medical and biological physics. Ukrmedknyga, Ternopil, 2012.
Google Scholar
Naranjo-Hernández D., Reina-Tosina J., Min M.: Fundamentals, Recent Advances, and Future Challenges in Bioimpedance Devices for Healthcare Applications. 2019, 9210258 [http://doi.org/10.1155/2019/9210258].
DOI: https://doi.org/10.1155/2019/9210258
Google Scholar
Norgren L., Hiatt W. R., Dormandy J. A., Nehler M. R., Harris K. A., Fowkes F. G.: Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). J Vasc Surg. 45, 2007, S5-S67.
DOI: https://doi.org/10.1016/j.jvs.2006.12.037
Google Scholar
Oyeniyi B. T. et al.: Trends in 1029 trauma deaths at a level 1 trauma center. Injury 48(1), 2017, 5–12.
DOI: https://doi.org/10.1016/j.injury.2016.10.037
Google Scholar
Paradis S. et al.: Chronology of mitochondrial and cellular events during skeletal muscle ischemia-reperfusion. American Journal of Physiology. Cell Physiology, 310(11), 2016, C968–C982 [http://doi.org/10.1152/ajpcell.00356.2015].
DOI: https://doi.org/10.1152/ajpcell.00356.2015
Google Scholar
Pavlov S. V. et al.: Analysis of microcirculatory disorders in inflammatory processes in the maxillofacial region on based of optoelectronic methods. Przeglad Elektrotechniczny 93(5), 2017, 114–117.
DOI: https://doi.org/10.15199/48.2017.05.23
Google Scholar
Pavlov S. V. et al.: Electro-optical system for the automated selection of dental implants according to their colour matching. Przeglad Elektrotechniczny 93(3), 2017, 121–124.
DOI: https://doi.org/10.15199/48.2017.03.28
Google Scholar
Prasad A., Roy M.: Bioimpedance analysis of vascular tissue and fluid flow in human and plant body: A review. Biosystems Engineering 197, 2020, 170–187.
DOI: https://doi.org/10.1016/j.biosystemseng.2020.06.006
Google Scholar
Tereshchenko N. F., Tsapenko V. V., Chuhraev N. V.: Research of electrical conductivity of biological animals. Bulletin of NTUU "KPI". Instrumentation series 53(1), 2017.
DOI: https://doi.org/10.20535/1970.53(1).2017.106807
Google Scholar
Wang G.: Holder David S: Electrical Impedance Tomography (1st edition). BioMedical Engineering OnLine 4, 2005, 27 [http://doi.org/10.1186/1475-925X-4-27].
DOI: https://doi.org/10.1186/1475-925X-4-27
Google Scholar
Wójcik W. et al.: Medical Fuzzy-Expert System for Assessment of the Degree of Anatomical Lesion of Coronary Arteries. International Journal of Environmental Research and Public Health 20(2), 2023, 979 [http://doi.org/10.3390/ijerph20020979].
DOI: https://doi.org/10.3390/ijerph20020979
Google Scholar
Wójcik W., Smolarz A.: Information Technology in Medical Diagnostics. CRC Press, 2017.
DOI: https://doi.org/10.1201/9781315098050
Google Scholar
Zarutskyi Y. L., Shudrak A. A.: Instructions for military field surgery. Chalchynska N. V.: Damage to the main vessels. Kyiv 2014, 351–373.
Google Scholar
Authors
Valerіi Kryvonosovyhtverf007@ukr.net
National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine Ukraine
https://orcid.org/0000-0002-8219-021X
Authors
Oleg AvruninKharkiv National University of Radio Electronics, Kharkiv, Ukraine Ukraine
https://orcid.org/0000-0002-6312-687X
Authors
Serhii SanderVinnitsia National Medical University named after M.I. Pirogov, Vinnytsia, Ukraine Ukraine
Authors
Volodymyr PavlovVinnytsia National Technical University, Vinnytsia, Ukraine Ukraine
https://orcid.org/0000-0002-0717-7082
Authors
Liliia MartyniukNational University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine Ukraine
https://orcid.org/0009-0007-3852-5610
Authors
Bagashar ZhumazhanovInstitute of Information and Computing Technologies of the CS MES, Republic Kazahstan Kazakhstan
https://orcid.org/0000-0002-5035-9076
Statistics
Abstract views: 237PDF downloads: 157
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Most read articles by the same author(s)
- Marko Andrushchenko, Karina Selivanova, Oleg Avrunin, Dmytro Palii, Sergii Tymchyk , Dana Turlykozhayeva, HAND MOVEMENT DISORDERS TRACKING BY SMARTPHONE BASED ON COMPUTER VISION METHODS , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 14 No. 2 (2024)
- Oleg Avrunin, Yana Nosova, Ibrahim Younouss Abdelhamid, Oleksandr Gryshkov, Birgit Glasmacher, USING 3D PRINTING TECHNOLOGY TO FULL-SCALE SIMULATION OF THE UPPER RESPIRATORY TRACT , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 9 No. 4 (2019)
- Maksym Tymkovych, Oleg Avrunin, Karina Selivanova, Alona Kolomiiets, Taras Bednarchyk, Saule Smailova, CORRESPONDENCE MATCHING IN 3D MODELS FOR 3D HAND FITTING , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 14 No. 1 (2024)
- Oleg Avrunin, Yana Nosova, Sergii Zlepko, Ibrahim Younouss Abdelhamid , Nataliia Shushliapina, ASSESSMENT OF THE DIAGNOSTIC VALUE OF THE METHOD OF COMPUTER OLFACTOMETRY , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 9 No. 3 (2019)
- Oleg Avrunin, Yana Nosova, Nataliia Shushliapina, Ibrahim Younouss Abdelhamid, Oleksandr Avrunin, Svetlana Kyrylashchuk, Olha Moskovchuk, Orken Mamyrbayev, ANALYSIS OF UPPER RESPIRATORY TRACT SEGMENTATION FEATURES TO DETERMINE NASAL CONDUCTANCE , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 12 No. 4 (2022)
- Mikhaylo Vasnetsov, Valeriy Voytsekhovich, Vladislav Ponevchinsky, Nataliia Kachalova, Alina Khodko, Oleksanr Mamuta, Volodymyr Pavlov, Vadym Khomenko, Natalia Manicheva, OPTICAL SPECKLE-FIELD VISIBILITY DIMINISHING BY REDUCTION OF A TEMPORAL COHERENCE , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 14 No. 1 (2024)
- Anatoliy Zinkovskii, Kyrylo Savchenko, Yevheniia Onyshchenko, Leonid Polishchuk, Abilkaiyr Nazerke, Bagashar Zhumazhanov, FINITE ELEMENT MODEL FOR ANALYSIS OF CHARACTERISTICS OF SHROUDED ROTOR BLADE VIBRATIONS , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 12 No. 4 (2022)