A USAGE OF THE IMPEDANCE METHOD FOR DETECTING CIRCULATORY DISORDERS TO DETERMINE THE DEGREE OF LIMB ISCHEMIA

Valerіi Kryvonosov

yhtverf007@ukr.net
National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine (Ukraine)
https://orcid.org/0000-0002-8219-021X

Oleg Avrunin


Kharkiv National University of Radio Electronics, Kharkiv, Ukraine (Ukraine)
https://orcid.org/0000-0002-6312-687X

Serhii Sander


Vinnitsia National Medical University named after M.I. Pirogov, Vinnytsia, Ukraine (Ukraine)

Volodymyr Pavlov


Vinnytsia National Technical University, Vinnytsia, Ukraine (Ukraine)
https://orcid.org/0000-0002-0717-7082

Liliia Martyniuk


National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine (Ukraine)
https://orcid.org/0009-0007-3852-5610

Bagashar Zhumazhanov


Institute of Information and Computing Technologies of the CS MES, Republic Kazahstan (Kazakhstan)
https://orcid.org/0000-0002-5035-9076

Abstract

New engineering technologies allow the creation of diagnostic devices for predicting the development of acute tissue ischemia of the extremities and determining the residual time until the removal of the tourniquet, and solving these tasks is particularly relevant during military actions. Acute limb ischemia is a sudden critical decrease in perfusion that threatens the viability of the limb. The incidence of this condition is 1.5 cases per 10 000 people per year. Acute ischemia occurs due to the blockage of blood flow in major arteries (embolism, thrombosis, trauma), leading to the cessation of adequate blood supply to metabolically active tissues of the limb, including the skin, muscles, and nerve endings. To address these issues, the article analyzes the changes in the impedance of biological tissue. The introduction and use of the coefficient of relative electrical conductivity, denoted as k, as a diagnostic criterion parameter, are justified. Experimental studies of changes in the coefficient of relative electrical conductivity k were conducted, confirming that the transition from exponential to linear dependencies of the coefficient establishes the degree of viability of the biological cell (tissue) and the moment of occurrence of reperfusion syndrome. It has been established that a deviation of the value of k by 10–15% from its unit value diagnoses the initial process of blood perfusion impairment and the development of ischemic tissue disease. The rate of change of k serves as a criterion for predicting the progression of the disease and as a corrective factor for therapeutic treatment.


Keywords:

ischemic tissue disease, perfusion, reperfusion syndrome, tourniquet, transient process, ionization, disease progression diagnosis, forecasting

Bera T. K.: Bioelectrical Impedance and The Frequency Dependent Current Conduction Through Biological Tissues: A Short Review. IOP Conference Series Materials Science and Engineering 331(1), 2018, 012005.
DOI: https://doi.org/10.1088/1757-899X/331/1/012005   Google Scholar

Bera T. K.: Methods of bioelectrical impedance for non-invasive health monitoring. Review article. 2014, 381251.
DOI: https://doi.org/10.1155/2014/381251   Google Scholar

Blaisdell F. W.: The pathophysiology of skeletal muscle ischemia and the reperfusion syndrome: a review, Cardiovasc. Surg., 10(6), 2002, 620–630.
DOI: https://doi.org/10.1016/S0967-2109(02)00070-4   Google Scholar

Bosboom E. M., Hesselink M. K., Oomens C. W., Bouten C. V., Drost M. R., Baaijens F. P.: Passive transverse mechanical properties of skeletal muscle under in vivo compression. J Biomech, Oct 34(10), 2001, 1365–1368.
DOI: https://doi.org/10.1016/S0021-9290(01)00083-5   Google Scholar

Bouten C. V. C., Breuls R. G. M., Peeters E. A. G., Oomens C. W. J., Baaijens F. P. T.: In vitro models to study compressive strain-induced muscle cell damage. Biorheology 40(1–3), 2003, 383–388.
  Google Scholar

Didukh V. D.: Biological physics with physical methods of analysis: teaching. Village, Ternopil, 2021.
  Google Scholar

European Convention "On the Protection of Vertebrate Animals Used for Research and Other Scientific Purposes". Strasbourg, 1986.
  Google Scholar

Frink M., Lechler P., Debus F., Ruchholtz S.: Multiple trauma and emergency room management. Dtsch. Arztebl. Int 114(29–30), 2017, 497–503.
DOI: https://doi.org/10.3238/arztebl.2017.0497   Google Scholar

Jiang Z., Yao J., Wang L., Wu H., Huang J., Zhao T., Takei M.: Development of a portable electrochemical impedance spectroscopy system for bio-detection. IEEE Sensors Journal, 19(15), 2019, 5979–5987 [http://doi.org/10.1109/JSEN.2019.2911718].
DOI: https://doi.org/10.1109/JSEN.2019.2911718   Google Scholar

Katelyan O. V. et al.: Study of the peripheral blood circulation of an abdominal wall using optoelectronic plethysmograph. Information Technology in Medical Diagnostics II. CRC Press, Balkema book, Taylor & Francis Group, London, 2019, 119–125.
DOI: https://doi.org/10.1201/9780429057618-15   Google Scholar

Koutsouras D. A., Lingstedt L. V., Lieberth K., Reinholz J., Mailänder V., Blom P. W. M., Gkoupidenis P.: Probing the impedance of a biological tissue with PEDOT:PSS-Coated metal electrodes: Effect of electrode size on sensing efficiency. Adv. Healthcare Mater. 8, 2019, 1901215 [http://doi.org/10.1002/adhm.201901215].
DOI: https://doi.org/10.1002/adhm.201901215   Google Scholar

Kozlovska T. I. et al.: Device to determine the level of peripheral blood circulation and saturation. Proc. SPIE 10031, 2016, 100312Z.
DOI: https://doi.org/10.1117/12.2249131   Google Scholar

Krivonosov V. E., Pavlov S. V., Sander S. V., Martyniuk L. V.: Method of detection and control of the development of ischemia of biological tissue. Patent No. 118335, dated 11.05.2023.
  Google Scholar

Kryvonosov V., Prudnikova N., Martyniuk L.: Justification of the electrical scheme of biological tissue replacementunder the action of DC voltage. Machinery & Energetics 13(4), 2022.
DOI: https://doi.org/10.31548/machenergy.13(4).2022.60-71   Google Scholar

Law of Ukraine No. 3447-VI "On the Protection of Animals from Cruelty", October 16, 2012.
  Google Scholar

Maegele M., Spinella P., Schöchl H.: The acute coagulopathy of trauma: mechanisms and tools for risk stratification. Shock 38, 2012, 450–458.
DOI: https://doi.org/10.1097/SHK.0b013e31826dbd23   Google Scholar

Mansoorifar A., Koklu A., Shihong M., Raj G. V., Beskok A.: Electrical Impedance Measurements of Biological Cells in Response to External Stimuli. Anal. Chem. 90(7), 2018, 4320–4327.
DOI: https://doi.org/10.1021/acs.analchem.7b05392   Google Scholar

Martsenyuk V. P.: Medical and biological physics. Ukrmedknyga, Ternopil, 2012.
  Google Scholar

Naranjo-Hernández D., Reina-Tosina J., Min M.: Fundamentals, Recent Advances, and Future Challenges in Bioimpedance Devices for Healthcare Applications. 2019, 9210258 [http://doi.org/10.1155/2019/9210258].
DOI: https://doi.org/10.1155/2019/9210258   Google Scholar

Norgren L., Hiatt W. R., Dormandy J. A., Nehler M. R., Harris K. A., Fowkes F. G.: Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). J Vasc Surg. 45, 2007, S5-S67.
DOI: https://doi.org/10.1016/j.jvs.2006.12.037   Google Scholar

Oyeniyi B. T. et al.: Trends in 1029 trauma deaths at a level 1 trauma center. Injury 48(1), 2017, 5–12.
DOI: https://doi.org/10.1016/j.injury.2016.10.037   Google Scholar

Paradis S. et al.: Chronology of mitochondrial and cellular events during skeletal muscle ischemia-reperfusion. American Journal of Physiology. Cell Physiology, 310(11), 2016, C968–C982 [http://doi.org/10.1152/ajpcell.00356.2015].
DOI: https://doi.org/10.1152/ajpcell.00356.2015   Google Scholar

Pavlov S. V. et al.: Analysis of microcirculatory disorders in inflammatory processes in the maxillofacial region on based of optoelectronic methods. Przeglad Elektrotechniczny 93(5), 2017, 114–117.
DOI: https://doi.org/10.15199/48.2017.05.23   Google Scholar

Pavlov S. V. et al.: Electro-optical system for the automated selection of dental implants according to their colour matching. Przeglad Elektrotechniczny 93(3), 2017, 121–124.
DOI: https://doi.org/10.15199/48.2017.03.28   Google Scholar

Prasad A., Roy M.: Bioimpedance analysis of vascular tissue and fluid flow in human and plant body: A review. Biosystems Engineering 197, 2020, 170–187.
DOI: https://doi.org/10.1016/j.biosystemseng.2020.06.006   Google Scholar

Tereshchenko N. F., Tsapenko V. V., Chuhraev N. V.: Research of electrical conductivity of biological animals. Bulletin of NTUU "KPI". Instrumentation series 53(1), 2017.
DOI: https://doi.org/10.20535/1970.53(1).2017.106807   Google Scholar

Wang G.: Holder David S: Electrical Impedance Tomography (1st edition). BioMedical Engineering OnLine 4, 2005, 27 [http://doi.org/10.1186/1475-925X-4-27].
DOI: https://doi.org/10.1186/1475-925X-4-27   Google Scholar

Wójcik W. et al.: Medical Fuzzy-Expert System for Assessment of the Degree of Anatomical Lesion of Coronary Arteries. International Journal of Environmental Research and Public Health 20(2), 2023, 979 [http://doi.org/10.3390/ijerph20020979].
DOI: https://doi.org/10.3390/ijerph20020979   Google Scholar

Wójcik W., Smolarz A.: Information Technology in Medical Diagnostics. CRC Press, 2017.
DOI: https://doi.org/10.1201/9781315098050   Google Scholar

Zarutskyi Y. L., Shudrak A. A.: Instructions for military field surgery. Chalchynska N. V.: Damage to the main vessels. Kyiv 2014, 351–373.
  Google Scholar

Download


Published
2023-12-20

Cited by

Kryvonosov, V., Avrunin, O., Sander, S., Pavlov, V., Martyniuk, L., & Zhumazhanov, B. (2023). A USAGE OF THE IMPEDANCE METHOD FOR DETECTING CIRCULATORY DISORDERS TO DETERMINE THE DEGREE OF LIMB ISCHEMIA. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 13(4), 5–10. https://doi.org/10.35784/iapgos.5393

Authors

Valerіi Kryvonosov 
yhtverf007@ukr.net
National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine Ukraine
https://orcid.org/0000-0002-8219-021X

Authors

Oleg Avrunin 

Kharkiv National University of Radio Electronics, Kharkiv, Ukraine Ukraine
https://orcid.org/0000-0002-6312-687X

Authors

Serhii Sander 

Vinnitsia National Medical University named after M.I. Pirogov, Vinnytsia, Ukraine Ukraine

Authors

Volodymyr Pavlov 

Vinnytsia National Technical University, Vinnytsia, Ukraine Ukraine
https://orcid.org/0000-0002-0717-7082

Authors

Liliia Martyniuk 

National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine Ukraine
https://orcid.org/0009-0007-3852-5610

Authors

Bagashar Zhumazhanov 

Institute of Information and Computing Technologies of the CS MES, Republic Kazahstan Kazakhstan
https://orcid.org/0000-0002-5035-9076

Statistics

Abstract views: 153
PDF downloads: 103


Most read articles by the same author(s)