NUMERICAL SIMULATIONS OF A FLAT PHANTOM IN THE NEAR-FIELD OF SYMMETRIC DIPOLE ANTENNA
Article Sidebar
Open full text
Issue Vol. 12 No. 2 (2022)
-
CKRIPT: A NEW SCRIPTING LANGUAGE FOR WEB APPLICATIONS
Wiktor Kania, Radoslaw Wajman4-9
-
MULTICLASS SKIN LESS IONS CLASSIFICATION BASED ON DEEP NEURAL NETWORKS
Magdalena Michalska10-14
-
THE SYNTHESIS OF MATHEMATICAL MODELS OF NONLINEAR DYNAMIC SYSTEMS USING VOLTERRA INTEGRAL EQUATION
Borys Mokin, Vitalii Mokin, Oleksandr Mokin, Orken Mamyrbaev, Saule Smailova15-19
-
THE SPECTRUM LENGTH METHOD IN QUANTITATIVE INTERPRETATION OF SELECTED OPTICAL SPECTRA
Martyna Wawrzyk20-23
-
DEVELOPMENT OF AUTOMATION OF WASTE SORTING AS AN INTEGRAL PART OF ENVIRONMENTAL PROTECTION
Nataliia Stelmakh, Oleg Belman24-29
-
METHOD FOR EVALUATION QUALITY PARAMETERS OF TELECOMMUNICATIONS SERVICES
Valentyn Zablotskyi, Yosyp Selepyna, Viktor Lyshuk, Natalia Yakymchuk, Anatolii Tkachuk30-33
-
NEW METHOD OF ON-LINE SUCCESSIVE-APPROXIMATION ADC CALIBRATION
Serhii Zakharchenko, Tetiana Korobeinikova, Aigul Tungatarova, Bakhyt Yeraliyeva34-37
-
DESIGN OF INNOVATIVE MEASUREMENT SYSTEMS IN ULTRASONIC TOMOGRAPHY
Michał Gołąbek, Tomasz Rymarczyk38-42
-
MATHEMATICAL SIMULATION OF A MICROELECTRONIC TRANSDUCER WITH FREQUENCY OUTPUT FOR MEASURING THE INDUCTION OF THE MAGNETIC FIELD
Alexander Osadchuk, Iaroslav Osadchuk, Volodymyr Martyniuk, Lyudmila Krylik, Maria Evseeva43-49
-
STUDY OF THE ELECTROMAGNETIC IMPACT OF THE OVERHEAD TRANSMISSION LINES OF 330 KV ON ECOLOGICAL SYSTEMS
Veronika Cherkashina, Svitlana Litvinchuk, Vladyslav Lesko, Svetlana Kravets, Volodymyr Netrebskiy, Olena Sikorska, Orken Mamyrbayev, Baglan Imanbek50-55
-
DETERMINATION OF THE OPTIMAL FREQUENCY OF THE PRIMARY MEASURING TRANSDUCER OF THE THICKNESS OF DIELECTRIC COATINGS OF METAL SURFACES
Kostyantyn Ovchynnykov, Oleksandr Vasilevskyi, Volodymyr Sevastianov, Yurii Polievoda, Aliya Kalizhanova, Bakhyt Yeraliyeva56-59
-
DYNAMICS OF THE CONVEYOR SPEED STABILIZATION SYSTEM AT VARIABLE LOADS
Leonid Polishchuk, Oleh Khmara , Oleh Piontkevych, Oksana Adler, Aigul Tungatarova , Ainur Kozbakova60-63
-
ON PRECISION ACOUSTIC WAVE CALCULATION IN A FREQUENCY DOMAIN
Tomasz Rymarczyk, Jan Sikora64-68
-
METHODS FOR DETECTING AND SELECTING AREAS ON TEXTURE BIOMEDICAL IMAGES OF BREAST CANCER
Ainur Orazayeva , Jamalbek Tussupov, Waldemar Wójcik, Sergii Pavlov, Gulzira Abdikerimova, Liudmyla Savytska69-72
-
NUMERICAL SIMULATIONS OF A FLAT PHANTOM IN THE NEAR-FIELD OF SYMMETRIC DIPOLE ANTENNA
Monika Styła, Sebastian Styła73-76
-
USING BAYESIAN METHODS IN THE TASK OF MODELING THE PATIENTS' PHARMACORESISTANCE DEVELOPMENT
Mariia A. Voronenko, Ulzhalgas M. Zhunissova, Saule S. Smailova, Luidmila N. Lytvynenko, Nataliia B. Savina, Pavlo P. Mulesa, Volodymyr I. Lytvynenko77-82
Archives
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
-
Vol. 10 No. 4
2020-12-20 16
-
Vol. 10 No. 3
2020-09-30 22
-
Vol. 10 No. 2
2020-06-30 16
-
Vol. 10 No. 1
2020-03-30 19
Main Article Content
DOI
Authors
Abstract
The paper presents a numerical electromagnetic simulations of SAR limited to human tissues based on FDTD algorithm using Sim4Life platform. Flat-bottomed dielectric vessel (flat phantom) and half-wave symmetric dipole antenna were modeled. Simulations were done for the frequencies 0.9 GHz and 0.6 GHz. The analysis were performed according to the IEEE/IEC62704-1 standard and include distributions of electric and magnetic fields around the phantom and antenna. Finally, SAR distributions in the phantom and near the antenna.
Keywords:
References
Alekseev S. I., Radzievsky A. A., Szabo I., Ziskin M. C.: Local heating of human skin by millimeter waves: Effect of blood flow. Bioelectromagnetics 26(6), 2005, 489–501 [http://doi.org/10.1002/bem.20118]. DOI: https://doi.org/10.1002/bem.20118
Andrenko A., Shimizu Y., Wake K.: SAR Measurements of UHF RFID Reader Antenna Operating in Close Proximity to a Flat Phantom. IEEE International Conference on RFID Technology and Applications (RFID-TA), 2019 [http://doi.org/10.1109/RFID-TA.2019.8892054]. DOI: https://doi.org/10.1109/RFID-TA.2019.8892054
Balzano Q., Garay O., Jr T. J.: Electromagnetic Energy Exposure of the Users of Portable Cellular Telephones. Vehicular Technology, IEEE Transactions, 44, 1995, 390–403 [http://doi.org/10.1109/25.406605]. DOI: https://doi.org/10.1109/25.406605
Bonato M., Dossi L., Gallucci S., Benini M., Tognola G., Parazzini M.: Assessment of Human Exposure Levels Due to Mobile Phone Antennas in 5G Networks. International Journal of Environmental Research and Public Health 19(3), 2022, 1546 [http://doi.org/10.3390/ijerph19031546]. DOI: https://doi.org/10.3390/ijerph19031546
Colombi D., Thors B., TöRnevik C., Balzano Q.: RF Energy Absorption by Biological Tissues in Close Proximity to Millimeter-Wave 5G Wireless Equipment. IEEE Access 6, 2018, 4974–4981, [http://doi.org/10.1109/ACCESS.2018.2790038]. DOI: https://doi.org/10.1109/ACCESS.2018.2790038
Hirata A.: Human exposure to radiofrequency energy above 6 GHz: review of computational dosimetry studies. Physics in Medicine and Biology 66, 2021, 08TR01 [http://doi.org/10.1088/1361-6560/abf1b7]. DOI: https://doi.org/10.1088/1361-6560/abf1b7
ICNIRP guidelines for limiting exposure to time‐varying electric, magnetic and electromagnetic fields (up to 300 GHz). Health Physics 74(4), 1998, 494–522.
Kuster N., Balzano Q.: Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300 MHz. Vehicular Technology, IEEE Transactions 41, 1992, 17–23 [http://doi.org/10.1109/25.120141]. DOI: https://doi.org/10.1109/25.120141
Kuster N., Kastle R,, Schmid T.: Dosimetric Evaluation of Handheld Mobile Communications Equipment with Known Precision. EICE Transactions on Communications E80-B(5), 1997, 645–652.
Papakanellos P. J., Nanou E. D., Sakka N. I., Tsiafakis V. S. G.: Near field interaction between a brain tissue equivalent phantom and a dipole antenna. 2nd International Workshop on Biological Effects of Electromagnetic Fields, 2001, 888–897.
Riu P. J., Foster K.: Heating of tissue by near-field exposure to a dipole: A model analysis. IEEE transactions on biomedical engineering 46, 1999, 911–917 [http://doi.org/10.1109/10.775400]. DOI: https://doi.org/10.1109/10.775400
Schmid T., Egger O., Kuster N.: Automated E-field scanning system for dosimetric assessments. IEEE Transactions on Microwave Theory and Techniques 44(1), 1996, 105–113 [http://doi.org/10.1109/22.481392]. DOI: https://doi.org/10.1109/22.481392
Stutzman W. L., Thiele G. A.: Antenna Theory and Design. Wiley, 2012.
Thors B., Colombi D, Ying Z., Bolin T., Törnevik C.: Exposure to RF EMF From Array Antennas in 5G Mobile Communication Equipment. IEEE Access 4, 2016, 7469–7478 [http://doi.org/10.1109/ACCESS.2016.2601145]. DOI: https://doi.org/10.1109/ACCESS.2016.2601145
Umashankar K., Taflove A.: A Novel Method to Analyze Electromagnetic Scattering of Complex Objects. IEEE Transactions on Electromagnetic Compatibility 4, 1982, 397–405 [http://doi.org/10.1109/TEMC.1982.304054]. DOI: https://doi.org/10.1109/TEMC.1982.304054
Yee K,: Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media. IEEE Transactions on Antennas and Propagation 14, 1966, 302–307 [http://doi.org/10.1109/TAP.1966.1138693]. DOI: https://doi.org/10.1109/TAP.1966.1138693
Yu Q., Gandhi O.P., Aronsson M., Wu D.: An automated SAR measurement system for compliance testing of personal wireless devices. IEEE Transactions on Electromagnetic Compatibility 41, 1999, 234 [http://doi.org/10.1109/15.784158]. DOI: https://doi.org/10.1109/15.784158
Ziskin M., Alekseev S., Foster K., Balzano Q.: Tissue models for RF exposure evaluation at frequencies above 6 GHz. Bioelectromagnetics – Wiley Online Library 39, 2018, 17389 [http://doi.org/10.1002/bem.22110]. DOI: https://doi.org/10.1002/bem.22110
fcc.gov/consumers/guides/specific-absorption-rate-sar-cell-phones-what-it-means-you (13.05.2022).
Article Details
Abstract views: 298
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
