THE SYNTHESIS OF MATHEMATICAL MODELS OF NONLINEAR DYNAMIC SYSTEMS USING VOLTERRA INTEGRAL EQUATION
Borys Mokin
borys.mokin@gmail.comVinnytsia National Technical University, Faculty of Intelligent Information Technologies and Automation (Ukraine)
http://orcid.org/0000-0002-5906-6122
Vitalii Mokin
Vinnytsia National Technical University, Faculty of Intelligent Information Technologies and Automation (Ukraine)
http://orcid.org/0000-0003-1946-0202
Oleksandr Mokin
Vinnytsia National Technical University, Faculty of Intelligent Information Technologies and Automation (Ukraine)
http://orcid.org/0000-0002-9277-3312
Orken Mamyrbaev
Al Farabi Kazakh National University, Institute of Information and Computer Technologies (Kazakhstan)
http://orcid.org/0000-0001-8318-3794
Saule Smailova
D. Serikbayev East Kazakhstan Technical University (Kazakhstan)
http://orcid.org/0000-0002-8411-3584
Abstract
The problem of creating mathematical models of nonlinear dynamical systems does not have an unambiguous solution and requires the creation of a separate synthesis method for each such object. To develop a method for synthesizing mathematical models of an extensive class of nonlinear dynamical systems with polynomial nonlinearities. The work uses a method based on the solution of the Volterra integral equation in the ideology set forth in Van Trees H.L., according to which the structure of a nonlinear dynamical object present47s a series connection of the linear part, characterizing the inertial properties of the system, and the nonlinear element, given by static characteristic. The difference of the suggested version of the method from the classical one, proposed in the works of Van Trees H.L., is an expansion of their input and output signals into Fourier series and a representation of the inertial part of these systems by their Bode plots, connected into one structure with input and output signals and non-linearity by Volterra integral equation. The algorithm of the proposed method is disclosed by the example of solving the problem of identifying a nonlinear dynamical system which impulse response of the inertial part satisfies the separability requirement, the order of the polynomial nonlinearity is three, and the model of the input signal has the form of a sinusoid "raised" over the time axis on a priori given constant level. A computational experiment was carried out on the example of nonlinear dynamical systems with the third order of the nonlinear characteristic and the first and second orders of the model of the inertial part of these systems with the specified algorithms of their parametric identification. The suggested method allows to synthesis the mathematical model of a nonlinear dynamical system with the polynomial static characteristic to the case when the input signal has an arbitrary number of harmonics, and the model of the inertial part and the nonlinear polynomial function have an arbitrary order.
Keywords:
nonlinear dynamical system, mathematical model, polynomial nonlinearity function, Bode plot, Fourier series, Volterra integral equationReferences
Chua L. O., Ng C-Y.: Frequency domain analysis of nonlinear systems: general theory. Electronic Circuits and Systems 3(2), 1979, 165–185.
DOI: https://doi.org/10.1049/ij-ecs.1979.0030
Google Scholar
Chua L. O., Ng C-Y.: Frequency domain analysis of nonlinear systems: formulation of transfer functions. Electronic Circuits and Systems 3(4), 1979, 257–269.
DOI: https://doi.org/10.1049/ij-ecs.1979.0045
Google Scholar
Halas M., Huba M., Kotta Ü.: An overview of transfer function formalism for nonlinear systems. Journal of Cybernetics and Informatics 8(3), 2009, 28–35.
Google Scholar
Halas M.: An algebraic framework generalizing the concept of transfer functions to nonlinear systems. Automatica 44(2), 2008, 1181–1190 [http://doi.org/10.1016/j.automatica.2007.09.008].
DOI: https://doi.org/10.1016/j.automatica.2007.09.008
Google Scholar
Halas М., Kotta Ü.: A transfer function approach to the realization problem of nonlinear systems. International Journal of Control 85(1), 2012, 320–331 [http://doi.org/10.1080/00207179.2011.651748].
DOI: https://doi.org/10.1080/00207179.2011.651748
Google Scholar
Kerschen G., Worden K., Vakakis A. F. et al.: Past, present and future of nonlinear system identification in structural dynamics. Mechanical Systems and Signal Processing 20(3), 2006, 505–592 [http://doi.org/10.1016/j.ymssp.2005.04.008].
DOI: https://doi.org/10.1016/j.ymssp.2005.04.008
Google Scholar
Mokin A. B., Mokin V. B., Mokin B. I. et al.: Determining the Conditions and Designing the Methods for Description of Processes in Complex Dynamic Objects by Equivalent Models not Higher than the Third-Order. Journal of Automation and Information Sciences 48(3), 2016, 83–97 [http://doi.org/10.1615/JAutomatInfScien.v48.i3.90].
DOI: https://doi.org/10.1615/JAutomatInfScien.v48.i3.90
Google Scholar
Mokin B. I., Mokin O. B.: The Fourier Integral Method in the Problems of Identification and Input Signal Renewal of Nonlinear Dynamical Systems. Visnyk of Vinnytsia Polytechnical Institute 3, 2000, 107–112.
Google Scholar
Mokin B. I.: Vossstanovleniye vkhodnykh signalov snelineynymi kharakteristikami preobrazovaniya. Metody teorii identifikatsii v zadachakh izmeritel'noy tekhniki i metrologii: III Vsesoyuznyy simpozium. 1982, 207–209.
Google Scholar
Mokin O. B., Mokin B. I., Khomiuk Ya. V.: Conditions of Equivalentiation of Nonlinear Dynamic Systems with Power Nonlinearities in the Frequency Domain. Visnyk of Vinnytsia Polytechnical Institute 5, 2016, 40–44.
Google Scholar
Mokin O. B., Mokin B. I.: Modeling and optimization of movement of multi-mass electric vehicles with difficult terrain surfaces. Vinnytsia National Technical University, Vinnytsia 2013.
Google Scholar
Mokin O. B., Mokin B. I.: Renewal of input signals of nonlinear Measuring converters by Fourier-integral method. International Measurement Confederation (IMEKO): XVII World Congress of the (Metrology in the 3rd Millennium), Dubrovnik 2003, 468–471.
Google Scholar
Nassirharand А., Mousavi Firdeh S.R.: Design of nonlinear controllers using describing functions with application to servomechanism. Asian Journal of Control 11(3), 2009, 446–450.
DOI: https://doi.org/10.1002/asjc.124
Google Scholar
Nassirharand А., Mousavi Firdeh S.R.: Design of nonlinear lead and/or lag compensators. International Journal of Control, Automation and Systems 6(3), 2008, 394–400.
Google Scholar
Nassirharand А., Teh S.H.: Describing function-based identification of nonlinear transfer functions for nonlinear systems from experimental/simulation data. Int. J. Modelling, Identification and Control 25(2), 2016, 93–101 [http://doi.org/10.1504/IJMIC.2016.075270].
DOI: https://doi.org/10.1504/IJMIC.2016.075270
Google Scholar
Pavlenko V. Speranskyy V.: Polyharmonic test signals application for identification of nonlinear dynamical systems based on volterra model. International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo), 2017, 1–5 [http://doi.org/10.1109/UkrMiCo.2017.8095372].
DOI: https://doi.org/10.1109/UkrMiCo.2017.8095372
Google Scholar
Rijlaarsdam D., Nuij P., Schoukens J., Steinbuch M.: A comparative overview of frequency domain methods for nonlinear systems. Mechatronics 42, 2017, 11–24 [http://doi.org/10.1016/j.mechatronics.2016.12.008].
DOI: https://doi.org/10.1016/j.mechatronics.2016.12.008
Google Scholar
Van Trees H. L.: Synthesis of Optimum Non-Linear Control Systems. Massachusetts Inst. of Technology, Cambridge 1962.
Google Scholar
Authors
Borys Mokinborys.mokin@gmail.com
Vinnytsia National Technical University, Faculty of Intelligent Information Technologies and Automation Ukraine
http://orcid.org/0000-0002-5906-6122
Authors
Vitalii MokinVinnytsia National Technical University, Faculty of Intelligent Information Technologies and Automation Ukraine
http://orcid.org/0000-0003-1946-0202
Authors
Oleksandr MokinVinnytsia National Technical University, Faculty of Intelligent Information Technologies and Automation Ukraine
http://orcid.org/0000-0002-9277-3312
Authors
Orken MamyrbaevAl Farabi Kazakh National University, Institute of Information and Computer Technologies Kazakhstan
http://orcid.org/0000-0001-8318-3794
Authors
Saule SmailovaD. Serikbayev East Kazakhstan Technical University Kazakhstan
http://orcid.org/0000-0002-8411-3584
Statistics
Abstract views: 259PDF downloads: 162
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Most read articles by the same author(s)
- Yelena Blinayeva, Saule Smailova, MODELING OF PROCESSES IN CRUDE OIL TREATED WITH LOW-FREQUENCY SOUNDS , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 9 No. 2 (2019)
- Yosyp Bilynsky, Aleksandr Nikolskyy, Viktor Revenok, Vasyl Pogorilyi, Saule Smailova, Oksana Voloshina, Saule Kumargazhanova, CONVOLUTIONAL NEURAL NETWORKS FOR EARLY COMPUTER DIAGNOSIS OF CHILD DYSPLASIA , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 13 No. 2 (2023)
- Maksym Tymkovych, Oleg Avrunin, Karina Selivanova, Alona Kolomiiets, Taras Bednarchyk, Saule Smailova, CORRESPONDENCE MATCHING IN 3D MODELS FOR 3D HAND FITTING , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 14 No. 1 (2024)
- Volodymyr Mykhalevych, Yurii Dobraniuk, Victor Matviichuk, Volodymyr Kraievskyi, Oksana Тiutiunnyk, Saule Smailova, Ainur Kozbakova, A COMPARATIVE STUDY OF VARIOUS MODELS OF EQUIVALENT PLASTIC STRAIN TO FRACTURE , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 13 No. 1 (2023)
- Leonid Timchenko, Natalia Kokriatskaia, Mykhailo Rozvodiuk, Volodymyr Tverdomed, Yuri Kutaev, Saule Smailova, Vladyslav Plisenko, Liudmyla Semenova, Dmytro Zhuk, THE USE OF Q-PREPARATION FOR AMPLITUDE FILTERING OF DISCRETED IMAGE , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 12 No. 4 (2022)
- Leonid Timchenko, Natalia Kokriatskaya, Volodymyr Tverdomed, Oleksandr Stetsenko, Valentina Kaplun, Oleg K. Kolesnytskyj, Oleksandr Reshetnik, Saule Smailova, Ulzhalgas Zhunissova, SEGMENTATION OF MULTIGRADATION IMAGES BASED ON SPATIAL CONNECTIVITY FEATURES , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 13 No. 3 (2023)
- Kateryna Barandych, Sergii Vysloukh, Grygoriy Tymchyk, Oleksandr Murashchenko, Saule Smailova, Saule Kumargazhanova, OPTIMIZATION OF PARTS CUTTING PROCESS PARAMETERS WORKING IN CONDITIONS OF CYCLIC LOADS , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 13 No. 3 (2023)
- Nataliia Kozan, Oleksandr Saleha, Olexander Dubolazov, Yuriy Ushenko, Iryna Soltys, Oleksandr Ushenko, Oleksandr Olar, Victor Paliy, Saule Smailova, POLARIZATION-CORRELATION MAPPING OF MICROSCOPIC IMAGES OF BIOLOGICAL TISSUES OF DIFFERENT MORPHOLOGICAL STRUCTURE , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 14 No. 3 (2024)