DEVELOPMENT AND MODELING OF THE ANTENNA SYSTEM THE DIRECTION FINDER UNMANNED AERIAL VEHICLE

Juliy Boiko

boykoym@khmnu.edu.ua
Khmelnytskyi National University, Department of Telecommunications, Media and Intelligent Technologies (Ukraine)
http://orcid.org/0000-0003-0603-7827

Oleksiy Polikarovskykh


Odessa National Maritime University (Ukraine)
https://orcid.org/0000-0002-1893-7390

Vitalii Tkachuk


Khmelnytskyi National University (Ukraine)
https://orcid.org/0000-0003-0640-2740

Abstract

The article is devoted to the design the proposed construction of the antenna system for the direction-finding complex of the UAV. The experimental part is represented by the results of mathematical modeling the behavior of the antenna in different parts the operating frequency range. The effectiveness of the adopted design solutions was evaluated in comparison with analogues of leading companies in the world. Based on the results of the research, the areas of application the antenna as part of the built-in functional mobile UAV direction finding systems were determined.


Keywords:

antennas, radiation pattern, modeling, voltage control

Boiko J., Karpova L., Eromenko O., Havrylko Y.: Evaluation of phase-frequency instability when processing complex radar signals. International Journal of Electrical and Computer Engineering 10(4), 2020, 4226–4236 [http://doi.org/10.11591/ijece.v10i4.pp4226-4236].
DOI: https://doi.org/10.11591/ijece.v10i4.pp4226-4236   Google Scholar

Ershadi S. E. et al.: Rotman lens design and optimization for 5G applications. International Journal of Microwave and Wireless Technologies 10(9), 2018, 1048–1057 [http://doi.org/10.5604/20830157.1121333].
DOI: https://doi.org/10.1017/S1759078718000934   Google Scholar

Ghaemi K., Ma R., Behdad N.: A Small-Aperture, Ultrawideband HF/VHF Direction-Finding System for Unmanned Aerial Vehicles. IEEE Transactions on Antennas and Propagation 66(10), 2018, 5109–5120 [http://doi.org/10.1109/TAP.2018.2858210].
DOI: https://doi.org/10.1109/TAP.2018.2858210   Google Scholar

Ghamari M. et al.: Unmanned Aerial Vehicle Communications for Civil Applications: A Review. IEEE Access 10, 2022, 102492–102531 [http://doi.org/10.1109/ACCESS.2022.3208571].
DOI: https://doi.org/10.1109/ACCESS.2022.3208571   Google Scholar

Jensen M. A., Mahmood A., Mehmood R.: A compact low-cost direction-finding system for unmanned aerial vehicles. Proceedings of 12th European Conference on Antennas and Propagation EuCAP 2018, London 2018, 1–4 [http://doi.org/10.1049/cp.2018.0983].
DOI: https://doi.org/10.1049/cp.2018.0983   Google Scholar

Kazici S., Loutridis A., Caratelli D.: A Novel Class of Super-Elliptical Vivaldi Antennas with Enhanced Radiation Properties. IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta 2019, 259–260 [http://doi.org/10.1109/APUSNCURSINRSM.2019.8888948].
DOI: https://doi.org/10.1109/APUSNCURSINRSM.2019.8888948   Google Scholar

Keshavarzian P., Okoniewski M., Nielsen J.: Active Phase-Conjugating Rotman Lens with Reflection Amplifiers for Backscattering Enhancement. IEEE Trans. on Microwave Theory and Techniques 68(1), 2020, 405–413 [http://doi.org/10.1017/S1759078718000934].
DOI: https://doi.org/10.1109/TMTT.2019.2939819   Google Scholar

Parkhomey I. et al.: Assessment of quality indicators of the automatic control system influence of accident interference. Telkomnika (Telecommunication Computing Electronics and Control) 18(4), 2020, 2070–2079 [http://doi.org/10.12928/TELKOMNIKA.v18i4.15601].
DOI: https://doi.org/10.12928/telkomnika.v18i4.15601   Google Scholar

Parkhomey I., Boiko J., Eromenko O.: Methodology for the Development of Radar Control Systems for Flying Targets with an Artificially Reduced RCS. Journal of Robotics and Control (JRC) 3(4), 2022, 402–408 [http://doi.org/10.18196/jrc.v3i4.15440].
DOI: https://doi.org/10.18196/jrc.v3i4.15440   Google Scholar

Pfeiffer C.: Fundamental Efficiency Limits for Small Metallic Antennas. IEEE Transactions on Antennas and Propagation 65(4), 2017, 1642–1650 [http://doi.org/10.1109/TAP.2017.2670532].
DOI: https://doi.org/10.1109/TAP.2017.2670532   Google Scholar

R&S®ADDx Single-Channel DF Antennas Product overview [http://www.sekorm.com/doc/1094983.html] (available: 03.11.2022).
  Google Scholar

Stockbroeckx B., Vander Vorst A.: Copolar and cross-polar radiation of Vivaldi antenna on dielectric substrate. IEEE Transactions on Antennas and Propagation 48(1), 2000, 19–25 [http://doi.org/10.1109/8.827381].
DOI: https://doi.org/10.1109/8.827381   Google Scholar

Valavanis K. P., Vachtsevanos G. J.: Handbook of Unmanned Aerial Vehicles – Dordrecht, Springer 2015 [http://doi.org/10.1007/978-90-481-9707-1].
DOI: https://doi.org/10.1007/978-90-481-9707-1   Google Scholar

Download


Published
2023-03-31

Cited by

Boiko, J., Polikarovskykh, O. ., & Tkachuk, V. (2023). DEVELOPMENT AND MODELING OF THE ANTENNA SYSTEM THE DIRECTION FINDER UNMANNED AERIAL VEHICLE. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 13(1), 26–32. https://doi.org/10.35784/iapgos.3239

Authors

Juliy Boiko 
boykoym@khmnu.edu.ua
Khmelnytskyi National University, Department of Telecommunications, Media and Intelligent Technologies Ukraine
http://orcid.org/0000-0003-0603-7827

Authors

Oleksiy Polikarovskykh 

Odessa National Maritime University Ukraine
https://orcid.org/0000-0002-1893-7390

Authors

Vitalii Tkachuk 

Khmelnytskyi National University Ukraine
https://orcid.org/0000-0003-0640-2740

Statistics

Abstract views: 661
PDF downloads: 358