SENSOR PLATFORM OF INDUSTRIAL TOMOGRAPHY FOR DIAGNOSTICS AND CONTROL OF TECHNOLOGICAL PROCESSES
Krzysztof Król
krzysztof.krol@netrix.com.pl1. Research and Development Center, Netrix S.A., 2. WSEI University (Poland)
http://orcid.org/0000-0002-0114-2794
Tomasz Rymarczyk
1. Research and Development Center, Netrix S.A., 2. WSEI University (Poland)
http://orcid.org/0000-0002-3524-9151
Konrad Niderla
1. Research and Development Center, Netrix S.A., 2. WSEI University (Poland)
http://orcid.org/0000-0003-1280-0622
Edward Kozłowski
Lublin University of Technology, Faculty of Management (Poland)
http://orcid.org/0000-0002-7147-4903
Abstract
This article presents an industrial tomography platform used to diagnose and control technological processes. The system has been prepared so that it is possible to add individual sensors cooperating with the system of an intelligent cyber-physical platform with an open architecture. Additionally, it is possible to configure and cooperate with external systems freely. As part of the experimental work, a platform has been developed that allows individual subsystems and external customer systems to work together. The cyber-physical system, a new generation of digital systems, focuses mainly on the complex interplay and integration between cyberspace and the physical world. A cyber-physical system consists of highly integrated computational, communication, control and physical elements. The solution focuses mainly on the complex interplay and integration between cyberspace and the physical world.
Keywords:
electrical capacitance tomography, cyber-physical systems, sensors, electrical impedance tomographyReferences
Akhtari S. et al.: Intelligent embedded load detection at the edge on industry 4.0 powertrains applications. 5th international forum on research and technology for society and industry – RTSD2019, 2019, 427–430.
DOI: https://doi.org/10.1109/RTSI.2019.8895598
Google Scholar
Assawaarayakul C. et al.: Integrate digital twin to exist production system for industry 4.0. 4th technology innovation management and engineering science international conference (TIMES-iCON) 2019, 1–5.
DOI: https://doi.org/10.1109/TIMES-iCON47539.2019.9024430
Google Scholar
Banasiak R. et al.: Study on two-phase flow regime visualisation and identification using 3D electrical capacitance tomography and fuzzy-logic classification. International Journal of Multiphase Flow 58, 2014, 1–14 [http://doi.org/10.1016/J.IJMULTIPHASEFLOW.2013.07.003].
DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2013.07.003
Google Scholar
Daubechies I.: Orthonormal Bases of Compactly Supported Wavelets. Communications on Pure and Applied Mathematics 41(7), 1988, 909–96.
DOI: https://doi.org/10.1002/cpa.3160410705
Google Scholar
He J. et al.: Locality-aware replacement algorithm in flash memory to optimise cloud computing for smart factory of industry 4.0. IEEE Access 5, 2017, 16252–16262.
DOI: https://doi.org/10.1109/ACCESS.2017.2740327
Google Scholar
Hui Z., Hastie T.: Regularisation and Variable Selection via the Elastic Net. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 67(2), 2005, 301–20.
DOI: https://doi.org/10.1111/j.1467-9868.2005.00503.x
Google Scholar
Król K. et al.: Intelligent Sensor Platform with Open Architecture for Monitoring and Control of Industry 4.0 Systems. European Research Studies Journal 24(2), 2021, 597–606.
DOI: https://doi.org/10.35808/ersj/2288
Google Scholar
Kania K. et al.: Image reconstruction in ultrasound transmission tomography using the Fermat’s Principle. Przegląd Elektrotechniczny 96(1), 2020, 186–189.
DOI: https://doi.org/10.15199/48.2020.01.41
Google Scholar
Kłosowski G. et al.: Maintenance of industrial reactors supported by deep learning driven ultrasound tomography. Eksploatacja i Niezawodność – Maintenance and Reliability 22(1), 2020, 138–147 [http://doi.org/10.17531/ein.2020.1.16].
DOI: https://doi.org/10.17531/ein.2020.1.16
Google Scholar
Kłosowski G. et al.: Neural hybrid tomograph for monitoring industrial reactors. Przegląd Elektrotechniczny 97(12), 2020, 190–193.
DOI: https://doi.org/10.15199/48.2020.12.40
Google Scholar
Kłosowski G. et al.: Quality Assessment of the Neural Algorithms on the Example of EIT-UST Hybrid Tomography. Sensors 20, 2020 [http://doi.org/10.3390/s20113324].
DOI: https://doi.org/10.3390/s20113324
Google Scholar
Kłosowski G. et al.: Using an LSTM network to monitor industrial reactors using electrical capacitance and impedance tomography – a hybrid approach. Eksploatacja i Niezawodność – Maintenance and Reliability 25(1), 2023, 11 [http://doi.org/10.17531/ein.2023.1.11].
DOI: https://doi.org/10.17531/ein.2023.1.11
Google Scholar
Kong X. T. et al.: Cyber physical ecommerce logistics system: an implementation case in Hong Kong. Comput Ind Eng 139, 2020, 106170.
DOI: https://doi.org/10.1016/j.cie.2019.106170
Google Scholar
Kozłowski E. et al.: Logistic regression in image reconstruction in electrical impedance tomography. Przegląd Elektrotechniczny 97(5), 2020, 95–98.
DOI: https://doi.org/10.15199/48.2020.05.19
Google Scholar
Kozłowski E. et al.: The use of principal component analysis and logistic regression for cutter state identification. Innovations in Industrial Engineering, Springer International Publishing 2021, 396–405.
DOI: https://doi.org/10.1007/978-3-030-78170-5_34
Google Scholar
Kozłowski E. et al.: Application of the logistic regression for determining transition probability matrix of operating states in the transport systems. Eksploatacja i Niezawodność – Maintenance and Reliability, 22(2), 2020, 192–200 [http://doi.org/10.17531/ein.2020.2.2].
DOI: https://doi.org/10.17531/ein.2020.2.2
Google Scholar
Kozłowski E. et al.: Assessment model of cutting tool condition for real-time supervision system. Eksploatacja i Niezawodność – Maintenance and Reliability, 21(4), 2019, 679–685 [http://doi.org/10.17531/ein.2019.4.18].
DOI: https://doi.org/10.17531/ein.2019.4.18
Google Scholar
Lins T. et al.: Cyber-physical production systems retrofitting in context of industry 4.0. Comput Ind Eng 139, 2020, 106193, 59.
DOI: https://doi.org/10.1016/j.cie.2019.106193
Google Scholar
Manavalan E., Jayakrishna K.: A review of internet of things (iot) embedded sustainable supply chain for industry 4.0 requirements. Comput Ind Eng 127, 2019, 925–953.
DOI: https://doi.org/10.1016/j.cie.2018.11.030
Google Scholar
Occhiuzzi C. et al.: Rfid technology for industry 4.0: architectures and challenges. IEEE international conference on RFID technology and applications (RFID-TA) 2019, 181–186.
DOI: https://doi.org/10.1109/RFID-TA.2019.8892049
Google Scholar
Percival D. B, Walden A.: Wavelet Methods for Time Series Analysis 4. Cambridge University Press, 2000.
DOI: https://doi.org/10.1017/CBO9780511841040
Google Scholar
Poór P. et al.: Predictive maintenance 4.0 as next evolution step in industrial maintenance development. International Research Conference on Smart Computing and Systems Engineering – SCSE, 2019, 245–253.
DOI: https://doi.org/10.23919/SCSE.2019.8842659
Google Scholar
Rymarczyk T., Sikora J.: Optimisation Method and PCA noise suppression application for Ultrasound Transmission Tomography. Przegląd Elektrotechniczny 96(2), 2020, 90–93.
Google Scholar
Rymarczyk T.: New methods to determine moisture areas by electrical impedance tomography. International Journal of Applied Electromagnetics and Mechanics 52(1–2), 2016, 79–87 [http://doi.org/10.3233/JAE-162071].
DOI: https://doi.org/10.3233/JAE-162071
Google Scholar
Rymarczyk T. et al.: Ultrasonic tomography for reflection and transmission wave analysis. Przegląd Elektrotechniczny 96(3), 2020, 170–173.
DOI: https://doi.org/10.15199/48.2020.03.37
Google Scholar
Rymarczyk T. et al.: The use of the autoencoder to improve images in ultrasound tomography. Przegląd Elektrotechniczny 96(8), 2020, 160–163.
DOI: https://doi.org/10.15199/48.2020.08.33
Google Scholar
Rymarczyk T. et al.: Logistic Regression for Machine Learning in Process Tomography. Sensors 19(15), 2020 [http://doi.org/10.3390/s19153400].
DOI: https://doi.org/10.3390/s19153400
Google Scholar
Rymarczyk T. et al.: Analysis of vertical and horizontal flows of liquids and gases through a wire-mesh sensor. Przegląd Elektrotechniczny 96(3), 2020.
DOI: https://doi.org/10.15199/48.2020.03.38
Google Scholar
Authors
Krzysztof Królkrzysztof.krol@netrix.com.pl
1. Research and Development Center, Netrix S.A., 2. WSEI University Poland
http://orcid.org/0000-0002-0114-2794
Authors
Tomasz Rymarczyk1. Research and Development Center, Netrix S.A., 2. WSEI University Poland
http://orcid.org/0000-0002-3524-9151
Authors
Konrad Niderla1. Research and Development Center, Netrix S.A., 2. WSEI University Poland
http://orcid.org/0000-0003-1280-0622
Authors
Edward KozłowskiLublin University of Technology, Faculty of Management Poland
http://orcid.org/0000-0002-7147-4903
Statistics
Abstract views: 246PDF downloads: 127
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Most read articles by the same author(s)
- Grzegorz Kłosowski, Tomasz Rymarczyk, USING NEURAL NETWORKS AND DEEP LEARNING ALGORITHMS IN ELECTRICAL IMPEDANCE TOMOGRAPHY , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 7 No. 3 (2017)
- Tomasz Rymarczyk, Tomasz Cieplak, Grzegorz Kłosowski, Paweł Rymarczyk, DESIGN OF DATA ANALYSIS SYSTEMS FOR BUSINESS PROCESS AUTOMATION , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 8 No. 3 (2018)
- Tomasz Rymarczyk, Michał Gołąbek, Piotr Lesiak, Andrzej Marciniak, Mirosław Guzik, CONSTRUCTION OF AN ULTRASONIC TOMOGRAPH FOR ANALYSIS OF TECHNOLOGICAL PROCESSES IN THE FIELD OF REFLECTION AND TRANSMISSION WAVES , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 9 No. 4 (2019)
- Tomasz Rymarczyk, Grzegorz Kłosowski, THE USE OF ARTIFICIAL INTELLIGENCE IN AUTOMATED IN-HOUSE LOGISTICS CENTRES , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 8 No. 1 (2018)
- Tomasz Rymarczyk, Bartek Przysucha, Marcin Kowalski, Piotr Bednarczuk, ANALYSIS OF DATA FROM MEASURING SENSORS FOR PREDICTION IN PRODUCTION PROCESS CONTROL SYSTEMS , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 9 No. 4 (2019)
- Tomasz Rymarczyk, Krzysztof Polakowski, Jan Sikora, A NEW CONCEPT OF DISCRETIZATION MODEL FOR IMAGING IMPROVING IN ULTRASOUND TRANSMISSION TOMOGRAPHY , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 9 No. 4 (2019)
- Konrad Niderla, Tomasz Rymarczyk, Jan Sikora, MANUFACTURING PLANNING AND CONTROL SYSTEM USING TOMOGRAPHIC SENSORS , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 8 No. 3 (2018)
- Tomasz Rymarczyk, Jan Sikora, SINGULAR INTEGRATION IN BOUNDARY ELEMENT METHOD FOR HELMHOLTZ EQUATION FORMULATED IN FREQUENCY DOMAIN , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 11 No. 4 (2021)
- Grzegorz Kłosowski, Tomasz Rymarczyk, APPLICATION OF CONVOLUTIONAL NEURAL NETWORKS IN WALL MOISTURE IDENTIFICATION BY EIT METHOD , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 12 No. 1 (2022)
- Tomasz Rymarczyk, Jan Sikora, SOME MORE ON LOGARITHMIC SINGULARITY INTEGRATION IN BOUNDARY ELEMENT METOD , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 14 No. 1 (2024)