SENSOR PLATFORM OF INDUSTRIAL TOMOGRAPHY FOR DIAGNOSTICS AND CONTROL OF TECHNOLOGICAL PROCESSES
Article Sidebar
Open full text
Issue Vol. 13 No. 1 (2023)
-
AN ENHANCED DIFFERENTIAL EVOLUTION ALGORITHM WITH ADAPTIVE WEIGHT BOUNDS FOR EFFICIENT TRAINING OF NEURAL NETWORKS
Saithip Limtrakul, Jeerayut Wetweerapong4-13
-
APPLICATION OF EXPLAINABLE ARTIFICIAL INTELLIGENCE IN SOFTWARE BUG CLASSIFICATION
Łukasz Chmielowski, Michał Kucharzak, Robert Burduk14-17
-
AUTOMATIC DETECTION OF ALZHEIMER'S DISEASE BASED ON ARTIFICIAL INTELLIGENCE
Achraf Benba, Abdelilah Kerchaoui18-21
-
IMPLEMENTATION OF AN ARTIFICIAL INTELLIGENCE-BASED ECG ACQUISITION SYSTEM FOR THE DETECTION OF CARDIAC ABNORMALITIES
Achraf Benba, Fatima Zahra El Attaoui, Sara Sandabad22-25
-
DEVELOPMENT AND MODELING OF THE ANTENNA SYSTEM THE DIRECTION FINDER UNMANNED AERIAL VEHICLE
Juliy Boiko, Oleksiy Polikarovskykh, Vitalii Tkachuk26-32
-
SENSOR PLATFORM OF INDUSTRIAL TOMOGRAPHY FOR DIAGNOSTICS AND CONTROL OF TECHNOLOGICAL PROCESSES
Krzysztof Król, Tomasz Rymarczyk, Konrad Niderla, Edward Kozłowski33-37
-
FEATURES OF THE IMPLEMENTATION OF COMPUTER VISION IN THE PROBLEMS OF AUTOMATED PRODUCT QUALITY CONTROL
Nataliia Stelmakh, Ihor Mastenko, Olga Sulima, Tetiana Rudyk38-41
-
SELF-OSCILLATING PARAMETRIC HUMIDITY SENSOR WITH FREQUENCY OUTPUT SIGNAL
Iaroslav Osadchuk, Alexander Osadchuk, Vladimir Osadchuk, Lyudmila Krylik42-49
-
DEVELOPMENT OF A MODIFIED METHOD OF NETWORK TRAFFIC FORMING
Valeriy Kozlovskiy, Natalia Yakymchuk, Yosyp Selepyna, Serhii Moroz, Anatolii Tkachuk50-53
-
DIGITALIZATION OF ENTERPRISE WITH ENSURING STABILITY AND RELIABILITY
Gulnar Balakayeva, Paul Ezhilchelvan, Yerlan Makashev, Christofer Phillips, Dauren Darkenbayev, Kalamkas Nurlybayeva54-57
-
MODIFICATIONS OF EVANS PRICE EQUILIBRIUM MODEL
Serhii Zabolotnii, Sergii Mogilei58-63
-
A COMPARATIVE STUDY OF VARIOUS MODELS OF EQUIVALENT PLASTIC STRAIN TO FRACTURE
Volodymyr Mykhalevych, Yurii Dobraniuk, Victor Matviichuk, Volodymyr Kraievskyi, Oksana Тiutiunnyk, Saule Smailova, Ainur Kozbakova64-70
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
Main Article Content
DOI
Authors
tomasz.rymarczyk@netrix.com.pl
Abstract
This article presents an industrial tomography platform used to diagnose and control technological processes. The system has been prepared so that it is possible to add individual sensors cooperating with the system of an intelligent cyber-physical platform with an open architecture. Additionally, it is possible to configure and cooperate with external systems freely. As part of the experimental work, a platform has been developed that allows individual subsystems and external customer systems to work together. The cyber-physical system, a new generation of digital systems, focuses mainly on the complex interplay and integration between cyberspace and the physical world. A cyber-physical system consists of highly integrated computational, communication, control and physical elements. The solution focuses mainly on the complex interplay and integration between cyberspace and the physical world.
Keywords:
References
Akhtari S. et al.: Intelligent embedded load detection at the edge on industry 4.0 powertrains applications. 5th international forum on research and technology for society and industry – RTSD2019, 2019, 427–430. DOI: https://doi.org/10.1109/RTSI.2019.8895598
Assawaarayakul C. et al.: Integrate digital twin to exist production system for industry 4.0. 4th technology innovation management and engineering science international conference (TIMES-iCON) 2019, 1–5. DOI: https://doi.org/10.1109/TIMES-iCON47539.2019.9024430
Banasiak R. et al.: Study on two-phase flow regime visualisation and identification using 3D electrical capacitance tomography and fuzzy-logic classification. International Journal of Multiphase Flow 58, 2014, 1–14 [http://doi.org/10.1016/J.IJMULTIPHASEFLOW.2013.07.003]. DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2013.07.003
Daubechies I.: Orthonormal Bases of Compactly Supported Wavelets. Communications on Pure and Applied Mathematics 41(7), 1988, 909–96. DOI: https://doi.org/10.1002/cpa.3160410705
He J. et al.: Locality-aware replacement algorithm in flash memory to optimise cloud computing for smart factory of industry 4.0. IEEE Access 5, 2017, 16252–16262. DOI: https://doi.org/10.1109/ACCESS.2017.2740327
Hui Z., Hastie T.: Regularisation and Variable Selection via the Elastic Net. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 67(2), 2005, 301–20. DOI: https://doi.org/10.1111/j.1467-9868.2005.00503.x
Król K. et al.: Intelligent Sensor Platform with Open Architecture for Monitoring and Control of Industry 4.0 Systems. European Research Studies Journal 24(2), 2021, 597–606. DOI: https://doi.org/10.35808/ersj/2288
Kania K. et al.: Image reconstruction in ultrasound transmission tomography using the Fermat’s Principle. Przegląd Elektrotechniczny 96(1), 2020, 186–189. DOI: https://doi.org/10.15199/48.2020.01.41
Kłosowski G. et al.: Maintenance of industrial reactors supported by deep learning driven ultrasound tomography. Eksploatacja i Niezawodność – Maintenance and Reliability 22(1), 2020, 138–147 [http://doi.org/10.17531/ein.2020.1.16]. DOI: https://doi.org/10.17531/ein.2020.1.16
Kłosowski G. et al.: Neural hybrid tomograph for monitoring industrial reactors. Przegląd Elektrotechniczny 97(12), 2020, 190–193. DOI: https://doi.org/10.15199/48.2020.12.40
Kłosowski G. et al.: Quality Assessment of the Neural Algorithms on the Example of EIT-UST Hybrid Tomography. Sensors 20, 2020 [http://doi.org/10.3390/s20113324]. DOI: https://doi.org/10.3390/s20113324
Kłosowski G. et al.: Using an LSTM network to monitor industrial reactors using electrical capacitance and impedance tomography – a hybrid approach. Eksploatacja i Niezawodność – Maintenance and Reliability 25(1), 2023, 11 [http://doi.org/10.17531/ein.2023.1.11]. DOI: https://doi.org/10.17531/ein.2023.1.11
Kong X. T. et al.: Cyber physical ecommerce logistics system: an implementation case in Hong Kong. Comput Ind Eng 139, 2020, 106170. DOI: https://doi.org/10.1016/j.cie.2019.106170
Kozłowski E. et al.: Logistic regression in image reconstruction in electrical impedance tomography. Przegląd Elektrotechniczny 97(5), 2020, 95–98. DOI: https://doi.org/10.15199/48.2020.05.19
Kozłowski E. et al.: The use of principal component analysis and logistic regression for cutter state identification. Innovations in Industrial Engineering, Springer International Publishing 2021, 396–405. DOI: https://doi.org/10.1007/978-3-030-78170-5_34
Kozłowski E. et al.: Application of the logistic regression for determining transition probability matrix of operating states in the transport systems. Eksploatacja i Niezawodność – Maintenance and Reliability, 22(2), 2020, 192–200 [http://doi.org/10.17531/ein.2020.2.2]. DOI: https://doi.org/10.17531/ein.2020.2.2
Kozłowski E. et al.: Assessment model of cutting tool condition for real-time supervision system. Eksploatacja i Niezawodność – Maintenance and Reliability, 21(4), 2019, 679–685 [http://doi.org/10.17531/ein.2019.4.18]. DOI: https://doi.org/10.17531/ein.2019.4.18
Lins T. et al.: Cyber-physical production systems retrofitting in context of industry 4.0. Comput Ind Eng 139, 2020, 106193, 59. DOI: https://doi.org/10.1016/j.cie.2019.106193
Manavalan E., Jayakrishna K.: A review of internet of things (iot) embedded sustainable supply chain for industry 4.0 requirements. Comput Ind Eng 127, 2019, 925–953. DOI: https://doi.org/10.1016/j.cie.2018.11.030
Occhiuzzi C. et al.: Rfid technology for industry 4.0: architectures and challenges. IEEE international conference on RFID technology and applications (RFID-TA) 2019, 181–186. DOI: https://doi.org/10.1109/RFID-TA.2019.8892049
Percival D. B, Walden A.: Wavelet Methods for Time Series Analysis 4. Cambridge University Press, 2000. DOI: https://doi.org/10.1017/CBO9780511841040
Poór P. et al.: Predictive maintenance 4.0 as next evolution step in industrial maintenance development. International Research Conference on Smart Computing and Systems Engineering – SCSE, 2019, 245–253. DOI: https://doi.org/10.23919/SCSE.2019.8842659
Rymarczyk T., Sikora J.: Optimisation Method and PCA noise suppression application for Ultrasound Transmission Tomography. Przegląd Elektrotechniczny 96(2), 2020, 90–93.
Rymarczyk T.: New methods to determine moisture areas by electrical impedance tomography. International Journal of Applied Electromagnetics and Mechanics 52(1–2), 2016, 79–87 [http://doi.org/10.3233/JAE-162071]. DOI: https://doi.org/10.3233/JAE-162071
Rymarczyk T. et al.: Ultrasonic tomography for reflection and transmission wave analysis. Przegląd Elektrotechniczny 96(3), 2020, 170–173. DOI: https://doi.org/10.15199/48.2020.03.37
Rymarczyk T. et al.: The use of the autoencoder to improve images in ultrasound tomography. Przegląd Elektrotechniczny 96(8), 2020, 160–163. DOI: https://doi.org/10.15199/48.2020.08.33
Rymarczyk T. et al.: Logistic Regression for Machine Learning in Process Tomography. Sensors 19(15), 2020 [http://doi.org/10.3390/s19153400]. DOI: https://doi.org/10.3390/s19153400
Rymarczyk T. et al.: Analysis of vertical and horizontal flows of liquids and gases through a wire-mesh sensor. Przegląd Elektrotechniczny 96(3), 2020. DOI: https://doi.org/10.15199/48.2020.03.38
Article Details
Abstract views: 429
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
