CONVOLUTIONAL NEURAL NETWORKS FOR EARLY COMPUTER DIAGNOSIS OF CHILD DYSPLASIA
Article Sidebar
Open full text
Issue Vol. 13 No. 2 (2023)
-
NOVEL HYBRID ALGORITHM USING CONVOLUTIONAL AUTOENCODER WITH SVM FOR ELECTRICAL IMPEDANCE TOMOGRAPHY AND ULTRASOUND COMPUTED TOMOGRAPHY
Łukasz Maciura, Dariusz Wójcik, Tomasz Rymarczyk, Krzysztof Król4-9
-
ANALYSIS OF POWER AND ENERGY PARAMETERS OF THE CONVEYOR INFRARED DRYER OF OIL-CONTAINING RAW MATERIALS
Igor Palamarchuk, Vladyslav Palamarchuk, Vadim Paziuk, Ruslan Hulevych, Aliya Kalizhanova, Magzhan Sarsembayev10-14
-
OPTIMIZATION OF RESOURCE ALLOCATION, EXPOSURE TIME AND ROTARY SPEED OF INCUBATIVE EGGS
Dmytro Milenin, Mykola Lysychenko, Andriy Milenin, Leonid Koval, Saltanat Amirgaliyeva, Maxatbek Satymbekov, Saltanat Adikanova15-19
-
DEVELOPMENT OF AN APPLICATION FOR THE THERMAL PROCESSING OF OIL SLIME IN THE INDUSTRIAL OIL AND GAS SECTOR
Gulnar Balakayeva, Gaukhar Kalmenova, Dauren Darkenbayev, Christofer Phillips20-26
-
AUTOMATED DEFINITION OF THE DISCRETE ELEMENTS INTERACTIONS IN WORKSPACE OF EQUIPMENT
Gregory Tymchyk, Volodymyr Skytsiouk, Tatiana Klotchko, Leonid Polishchuk, Anatolii Hrytsak, Saule Rakhmetullina, Beibut Amirgaliyev27-35
-
TONTOR ZONES MODEL FOR AUTOMATIVE OBJECT MONITORING
Gregory Tymchyk, Volodymyr Skytsiouk, Tatiana Klotchko, Roman Akselrod, Valerii Shenfeld, Aliya Kalizhanova, Didar Yedilkhan, Gaukhar Borankulova36-43
-
THEORETICAL AND EXPERIMENTAL SUBSTANTIATION OF THE EXTRACTION PROCESS WITH THINNING BIMETALLIC TUBULAR ELEMENTS OF DISSIMILAR METALS AND ALLOYS
Viacheslav Titov, Olexandr Mozghovyi, Ruslan Borys, Mykola Bogomolov, Yedilkhan Amirgaliyev, Zhalau Aitkulov44-49
-
THE APPLICATION OF MACHINE LEARNING ON THE SENSORS OF SMARTPHONES TO DETECT FALLS IN REAL-TIME
Achraf Benba, Mouna Akki, Sara Sandabad50-55
-
CONVOLUTIONAL NEURAL NETWORKS FOR EARLY COMPUTER DIAGNOSIS OF CHILD DYSPLASIA
Yosyp Bilynsky, Aleksandr Nikolskyy, Viktor Revenok, Vasyl Pogorilyi, Saule Smailova, Oksana Voloshina, Saule Kumargazhanova56-63
-
CARDIOMETABOLIC RISK PREDICTION IN PATIENTS WITH NON-ALCOHOLIC FATTY LIVER DISEASE COMBINED WITH SUBCLINICAL HYPOTHYROIDISM
Olena Kolesnikova, Olena Vysotska, Anna Potapenko, Anastasia Radchenko, Anna Trunova, Natalia Virstyuk, Liudmyla Vasylevska-Skupa, Aliya Kalizhanova, Nazerka Mukanova64-68
-
LOCAL DIFFERENCE THRESHOLD LEARNING IN FILTERING NORMAL WHITE NOISE
Leonid Timchenko, Natalia Kokriatskaia, Volodymyr Tverdomed, Natalia Kalashnik, Iryna Shvarts, Vladyslav Plisenko, Dmytro Zhuk, Saule Kumargazhanova69-73
-
MODELING AND ANALYSIS OF THE CHARACTERISTICS OF MULTICHANNEL AND MULTI-NODE COMPUTER NETWORKS WITH PRIORITY SERVICE
Zakir Nasib Huseynov, Mahil Isa Mammadov, Togrul Atabay Ismayilov74-77
-
STATISTICAL METHODS FOR EVALUATING EXPERIMENTAL DATA ON THE USE OF MATHEMATICAL COMPETENCIES IN STUDY FOR A RESILIENT ECONOMY
Vira Petruk, Olena Prozor, Yuliia Sabadosh, Iryna Baranovska, Maksim Palii, Yevheniia Moroz, Saule Kumargazhanova, Dinara Mussayeva78-85
-
SIMULATION OF THE INFLUENCE OF INVESTMENT AND INNOVATION ACTIVITIES ON ENSURING THE INTERNATIONAL COMPETITIVENESS OF COUNTRIES
Olena Liutak, Olena Baula, Anatolii Tkachuk86-92
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
Main Article Content
DOI
Authors
Abstract
The problem in ultrasound diagnostics hip dysplasiais the lack of experience of the doctor in case of incorrect orientation of the hip joint andultrasound head. The aim of this study was to evaluate the ability of the convolutional neural network (CNN) to classifyand recognize ultrasound imagingof thehip joint obtained at the correct and incorrect position of the ultrasound sensor head in the computer diagnosisofpediatricdysplasia. CNN's suchas GoogleNet, SqueezeNet, and AlexNet were selected for the study. The most optimal for the task is the useof CNN GoogleNet showed. In this CNN usedtransfer learning. At the same time, fine-tuning of the network and additional training on the databaseof 97 standards of ultrasonic images of the hip jointwere applied. Image type RGB 32 bit, 210 × 300 pixels are used. Fine-tuning has been performedthe lower layers of the structure CNN, in which 5 classesare allocated, respectively 4 classes of hip dysplasia types according to the Graf, and the Type ERROR ultrasound image, where position of the ultrasoundsensor head and of the hip joint in ultrasound diagnostics are incorrect orientation.It was found that the authenticity of training and testing is the highestfor the GoogleNet network:when classified in the training group accuracy is up to 100%, when classified in the test group accuracy–84.5%
Keywords:
References
Bilynsky Y. Y., Urvan O. G., Guralnyk A. B.: Modern methods of perinatal diagnosis of hip dysplasia: global trends. Scientific Proceedings of VNTU 4, 2019, 40–50. DOI: https://doi.org/10.31649/2307-5392-2019-4-1-10
Bilynsky Y. Y. et al.: Overview of methods of ultrasound diagnosis of hip dysplasia and determination of the most appropriate of them for computer prediction of the disease. Medical Informatics and Engineering 3, 2019, 49–58 [http://doi.org/10.11603/mie.1996-1960.2019.3.10432]. DOI: https://doi.org/10.11603/mie.1996-1960.2019.3.10432
Bilynsky Y. Y. et al.: Algorithm of computer diagnostics of 2D ultrasound images of hip dysplasia. Modern problems of information communications, radioelectronics and nanosystems. International scientific and technical conference, Vinnytsia 2019, 150–153.
Bilynsky Y. Y. et al.: Computer analysis of 2D ultrasound images of the hip joint and measurement of its geometry. Information Technologies and Computer Engineering 3(46), 2019, 4–13 [http://doi.org/10.31649/1999-9941-2019-46-3-4-14]. DOI: https://doi.org/10.31649/1999-9941-2019-46-3-4-14
Bilynsky Y. Y. et al.: Contouring of microcapillary images based on sharpening to one pixel of boundary curves. Proc. SPIE 10445, 2017, 104450Y [http://doi.org/10.1117/12.2281005]. DOI: https://doi.org/10.1117/12.2281005
Bilynsky Y. et al.: Controlling geometric dimensions of small-size complex-shaped objects. Proc. SPIE 10445, 2017, 104450I [http://doi.org/10.1117/12.2280899]. DOI: https://doi.org/10.1117/12.2280899
Breve F. A.: COVID-19 detection on Chest X-ray images: A comparison of CNN architectures and ensembles. Expert Systems With Applications, 2022, [http://doi.org/10.1016/j.eswa.2022.117549]. DOI: https://doi.org/10.1016/j.eswa.2022.117549
Dahlström H.: Dynamic ultrasonic evaluation of congenital hip dislocation. University of Umeå, 1989.
Forrest N. I. et al.: SqueezeNet: Alexnet-level accuracy with 50x fewer parameters and <0.5mb model size. arXiv:1602.07360, 2016.
Graf R. et al.: Hip sonography update. Quality-management, catastrophes-tips and tricks. Medical Ultrasonography 15(4), 2013, 299–303. DOI: https://doi.org/10.11152/mu.2013.2066.154.rg2
Graf R.: The diagnosis of congenital hip-joint dislocation by the ultrasonic combound treatment. Arch. Orth. Traum. Surg. 97, 1980, 117–133, [http://doi.org/10.1007/BF00450934]. DOI: https://doi.org/10.1007/BF00450934
Harcke H. et al.: Examination of the infant hip with real-time ultrasonography. J. Ultrasound Med. 3, 1984, [http://doi.org/10.7863/jum.1984.3.3.131]. DOI: https://doi.org/10.7863/jum.1984.3.3.131
Krasilenko V. et al.: Modeling optical pattern recognition algorithms for object tracking based on nonlinear equivalent models and subtraction of frames. Proc. SPIE 9813, 2015, 981302 [http://doi.org/10.1117/12.2205779]. DOI: https://doi.org/10.1117/12.2205779
Krasilenko V. et al.: Design and simulation of programmable relational optoelectronic time-pulse coded processors as base elements for sorting neural networks. Proc. SPIE 7723, 2010, 77231G [http://doi.org/10.1117/12.851574]. DOI: https://doi.org/10.1117/12.851574
Krasilenko V. et al.: Design and simulation of optoelectronic complementary dual neural elements for realizing a family of normalized vector 'equivalence-nonequivalence' operations. Proc. SPIE 7703, 2010, 77030P [http://doi.org/10.1117/12.850871]. DOI: https://doi.org/10.1117/12.850871
Krizhevsky A. et al.: ImageNet classification with deep convolutional neural networks. Communications of the ACM 60(6), 2017, 84–90. DOI: https://doi.org/10.1145/3065386
Marochko N. V.: Ultrasound study of hip joints in children of the first year of life: textbook for the system of post-graduate professional education of doctors. Izd. IPKSZ center, Khabarovsk 2008.
Morin C. et al.: The infant hip: real-time US assessment of acetabular development. Radiology 157, 1985, 673–677. DOI: https://doi.org/10.1148/radiology.157.3.3903854
Rosendahl K. et al.: Developmental dysplasia of the hip: prevalence based on ultrasound diagnosis. Pediatr. Radiol. 26(9), 1996, 635–639, [http://doi.org/10.1007/BF01356824]. DOI: https://doi.org/10.1007/BF01356824
Shokraei F. et al.: From CNNs to GANs for cross-modality medical image estimation. Computers in Biology and Medicine 146, 2022, 105556. DOI: https://doi.org/10.1016/j.compbiomed.2022.105556
Szegedy C. et al.: Going deeper with convolutions. ArXiv 2014 [http://arxiv.org/pdf/1409.4842.pdf]. DOI: https://doi.org/10.1109/CVPR.2015.7298594
Terjesen T., Bredland T., Berg V.: Ultrasound for hip assessment in the newborn. J Bone Joint Surg Br. 71(5), 1989, 767–773. DOI: https://doi.org/10.1302/0301-620X.71B5.2684989
Wang D. et al.: Deep Learning for Identifying Metastatic Breast Cancer. ArXiv 2016 [http://arxiv.org/pdf/1606.05718.pdf].
Weiss K., Khoshgoftaar T. M., Wang D.: A Survey of Transfer Learning. Journal of Big Data 3(1), 2016, 1–9 [http://doi.org/10.1186/s40537-016-0043-6]. DOI: https://doi.org/10.1186/s40537-016-0043-6
Article Details
Abstract views: 541
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
