CONVOLUTIONAL NEURAL NETWORKS FOR EARLY COMPUTER DIAGNOSIS OF CHILD DYSPLASIA
Yosyp Bilynsky
Yosyp.bilynsky@gmail.comVinnytsia National Technical University , Vinnytsia, Ukraine (Ukraine)
http://orcid.org/0000-0002-9659-7221
Aleksandr Nikolskyy
National Pirogov Memorial Medical University, Vinnytsya, Ukraine (Ukraine)
http://orcid.org/0000-0002-0098-0606
Viktor Revenok
National Pirogov Memorial Medical University, Vinnytsya, Ukraine (Ukraine)
http://orcid.org/0000-0002-8239-6955
Vasyl Pogorilyi
National Pirogov Memorial Medical University, Vinnytsya, Ukraine (Ukraine)
http://orcid.org/0000-0001-5317-5216
Saule Smailova
D.Serikbayev East Kazakhstan State Technical University, Ust-Kamenogorsk, Kazakhstan (Kazakhstan)
http://orcid.org/0000-0002-8411-3584
Oksana Voloshina
Vinnytsia Mykhailo Kotsubynsky State Pedagogical University, Vinnytsya, Ukraine (Ukraine)
http://orcid.org/0000-0002-9977-7682
Saule Kumargazhanova
D.Serikbayev East Kazakhstan State Technical University, Ust-Kamenogorsk, Kazakhstan (Kazakhstan)
http://orcid.org/0000-0002-6744-4023
Abstract
The problem in ultrasound diagnostics hip dysplasiais the lack of experience of the doctor in case of incorrect orientation of the hip joint andultrasound head. The aim of this study was to evaluate the ability of the convolutional neural network (CNN) to classifyand recognize ultrasound imagingof thehip joint obtained at the correct and incorrect position of the ultrasound sensor head in the computer diagnosisofpediatricdysplasia. CNN's suchas GoogleNet, SqueezeNet, and AlexNet were selected for the study. The most optimal for the task is the useof CNN GoogleNet showed. In this CNN usedtransfer learning. At the same time, fine-tuning of the network and additional training on the databaseof 97 standards of ultrasonic images of the hip jointwere applied. Image type RGB 32 bit, 210 × 300 pixels are used. Fine-tuning has been performedthe lower layers of the structure CNN, in which 5 classesare allocated, respectively 4 classes of hip dysplasia types according to the Graf, and the Type ERROR ultrasound image, where position of the ultrasoundsensor head and of the hip joint in ultrasound diagnostics are incorrect orientation.It was found that the authenticity of training and testing is the highestfor the GoogleNet network:when classified in the training group accuracy is up to 100%, when classified in the test group accuracy–84.5%
Keywords:
convolutional neural networks, computer diagnosis, ultrasound image child dysplasiaReferences
Bilynsky Y. Y., Urvan O. G., Guralnyk A. B.: Modern methods of perinatal diagnosis of hip dysplasia: global trends. Scientific Proceedings of VNTU 4, 2019, 40–50.
DOI: https://doi.org/10.31649/2307-5392-2019-4-1-10
Google Scholar
Bilynsky Y. Y. et al.: Overview of methods of ultrasound diagnosis of hip dysplasia and determination of the most appropriate of them for computer prediction of the disease. Medical Informatics and Engineering 3, 2019, 49–58 [http://doi.org/10.11603/mie.1996-1960.2019.3.10432].
DOI: https://doi.org/10.11603/mie.1996-1960.2019.3.10432
Google Scholar
Bilynsky Y. Y. et al.: Algorithm of computer diagnostics of 2D ultrasound images of hip dysplasia. Modern problems of information communications, radioelectronics and nanosystems. International scientific and technical conference, Vinnytsia 2019, 150–153.
Google Scholar
Bilynsky Y. Y. et al.: Computer analysis of 2D ultrasound images of the hip joint and measurement of its geometry. Information Technologies and Computer Engineering 3(46), 2019, 4–13 [http://doi.org/10.31649/1999-9941-2019-46-3-4-14].
DOI: https://doi.org/10.31649/1999-9941-2019-46-3-4-14
Google Scholar
Bilynsky Y. Y. et al.: Contouring of microcapillary images based on sharpening to one pixel of boundary curves. Proc. SPIE 10445, 2017, 104450Y [http://doi.org/10.1117/12.2281005].
DOI: https://doi.org/10.1117/12.2281005
Google Scholar
Bilynsky Y. et al.: Controlling geometric dimensions of small-size complex-shaped objects. Proc. SPIE 10445, 2017, 104450I [http://doi.org/10.1117/12.2280899].
DOI: https://doi.org/10.1117/12.2280899
Google Scholar
Breve F. A.: COVID-19 detection on Chest X-ray images: A comparison of CNN architectures and ensembles. Expert Systems With Applications, 2022, [http://doi.org/10.1016/j.eswa.2022.117549].
DOI: https://doi.org/10.1016/j.eswa.2022.117549
Google Scholar
Dahlström H.: Dynamic ultrasonic evaluation of congenital hip dislocation. University of Umeå, 1989.
Google Scholar
Forrest N. I. et al.: SqueezeNet: Alexnet-level accuracy with 50x fewer parameters and <0.5mb model size. arXiv:1602.07360, 2016.
Google Scholar
Graf R. et al.: Hip sonography update. Quality-management, catastrophes-tips and tricks. Medical Ultrasonography 15(4), 2013, 299–303.
DOI: https://doi.org/10.11152/mu.2013.2066.154.rg2
Google Scholar
Graf R.: The diagnosis of congenital hip-joint dislocation by the ultrasonic combound treatment. Arch. Orth. Traum. Surg. 97, 1980, 117–133, [http://doi.org/10.1007/BF00450934].
DOI: https://doi.org/10.1007/BF00450934
Google Scholar
Harcke H. et al.: Examination of the infant hip with real-time ultrasonography. J. Ultrasound Med. 3, 1984, [http://doi.org/10.7863/jum.1984.3.3.131].
DOI: https://doi.org/10.7863/jum.1984.3.3.131
Google Scholar
Krasilenko V. et al.: Modeling optical pattern recognition algorithms for object tracking based on nonlinear equivalent models and subtraction of frames. Proc. SPIE 9813, 2015, 981302 [http://doi.org/10.1117/12.2205779].
DOI: https://doi.org/10.1117/12.2205779
Google Scholar
Krasilenko V. et al.: Design and simulation of programmable relational optoelectronic time-pulse coded processors as base elements for sorting neural networks. Proc. SPIE 7723, 2010, 77231G [http://doi.org/10.1117/12.851574].
DOI: https://doi.org/10.1117/12.851574
Google Scholar
Krasilenko V. et al.: Design and simulation of optoelectronic complementary dual neural elements for realizing a family of normalized vector 'equivalence-nonequivalence' operations. Proc. SPIE 7703, 2010, 77030P [http://doi.org/10.1117/12.850871].
DOI: https://doi.org/10.1117/12.850871
Google Scholar
Krizhevsky A. et al.: ImageNet classification with deep convolutional neural networks. Communications of the ACM 60(6), 2017, 84–90.
DOI: https://doi.org/10.1145/3065386
Google Scholar
Marochko N. V.: Ultrasound study of hip joints in children of the first year of life: textbook for the system of post-graduate professional education of doctors. Izd. IPKSZ center, Khabarovsk 2008.
Google Scholar
Morin C. et al.: The infant hip: real-time US assessment of acetabular development. Radiology 157, 1985, 673–677.
DOI: https://doi.org/10.1148/radiology.157.3.3903854
Google Scholar
Rosendahl K. et al.: Developmental dysplasia of the hip: prevalence based on ultrasound diagnosis. Pediatr. Radiol. 26(9), 1996, 635–639, [http://doi.org/10.1007/BF01356824].
DOI: https://doi.org/10.1007/BF01356824
Google Scholar
Shokraei F. et al.: From CNNs to GANs for cross-modality medical image estimation. Computers in Biology and Medicine 146, 2022, 105556.
DOI: https://doi.org/10.1016/j.compbiomed.2022.105556
Google Scholar
Szegedy C. et al.: Going deeper with convolutions. ArXiv 2014 [http://arxiv.org/pdf/1409.4842.pdf].
DOI: https://doi.org/10.1109/CVPR.2015.7298594
Google Scholar
Terjesen T., Bredland T., Berg V.: Ultrasound for hip assessment in the newborn. J Bone Joint Surg Br. 71(5), 1989, 767–773.
DOI: https://doi.org/10.1302/0301-620X.71B5.2684989
Google Scholar
Wang D. et al.: Deep Learning for Identifying Metastatic Breast Cancer. ArXiv 2016 [http://arxiv.org/pdf/1606.05718.pdf].
Google Scholar
Weiss K., Khoshgoftaar T. M., Wang D.: A Survey of Transfer Learning. Journal of Big Data 3(1), 2016, 1–9 [http://doi.org/10.1186/s40537-016-0043-6].
DOI: https://doi.org/10.1186/s40537-016-0043-6
Google Scholar
Authors
Yosyp BilynskyYosyp.bilynsky@gmail.com
Vinnytsia National Technical University , Vinnytsia, Ukraine Ukraine
http://orcid.org/0000-0002-9659-7221
Authors
Aleksandr NikolskyyNational Pirogov Memorial Medical University, Vinnytsya, Ukraine Ukraine
http://orcid.org/0000-0002-0098-0606
Authors
Viktor RevenokNational Pirogov Memorial Medical University, Vinnytsya, Ukraine Ukraine
http://orcid.org/0000-0002-8239-6955
Authors
Vasyl PogorilyiNational Pirogov Memorial Medical University, Vinnytsya, Ukraine Ukraine
http://orcid.org/0000-0001-5317-5216
Authors
Saule SmailovaD.Serikbayev East Kazakhstan State Technical University, Ust-Kamenogorsk, Kazakhstan Kazakhstan
http://orcid.org/0000-0002-8411-3584
Authors
Oksana VoloshinaVinnytsia Mykhailo Kotsubynsky State Pedagogical University, Vinnytsya, Ukraine Ukraine
http://orcid.org/0000-0002-9977-7682
Authors
Saule KumargazhanovaD.Serikbayev East Kazakhstan State Technical University, Ust-Kamenogorsk, Kazakhstan Kazakhstan
http://orcid.org/0000-0002-6744-4023
Statistics
Abstract views: 308PDF downloads: 171
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Most read articles by the same author(s)
- Madina Bazarova, Waldemar Wójcik, Gulnaz Zhomartkyzy, Saule Kumargazhanova, Galina Popova , KNOWLEDGE TRANSFER AS ONE OF THE FACTORS OF INCREASING UNIVERSITY COMPETITIVENESS , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 9 No. 3 (2019)
- Yosyp Bilynsky, Oksana Horodetska, Svitlana Sirenko, Dmytro Novytskyi, EXPERIMENTAL STUDY OF NATURAL GAS HUMIDITY CONTROL DEVICE , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 10 No. 3 (2020)
- Roman Obertyukh, Andrіі Slabkyі, Leonid Polishchuk, Oleksandr Povstianoi, Saule Kumargazhanova, Maxatbek Satymbekov, DYNAMIC AND MATHEMATICAL MODELS OF THE HYDROIMPULSIVE VIBRO-CUTTING DEVICE WITH A PRESSURE PULSE GENERATOR BULT INTO THE RING SPRING , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 12 No. 3 (2022)
- Borys Mokin, Vitalii Mokin, Oleksandr Mokin, Orken Mamyrbaev, Saule Smailova, THE SYNTHESIS OF MATHEMATICAL MODELS OF NONLINEAR DYNAMIC SYSTEMS USING VOLTERRA INTEGRAL EQUATION , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 12 No. 2 (2022)
- Maksym Tymkovych, Oleg Avrunin, Karina Selivanova, Alona Kolomiiets, Taras Bednarchyk, Saule Smailova, CORRESPONDENCE MATCHING IN 3D MODELS FOR 3D HAND FITTING , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 14 No. 1 (2024)
- Leonid Timchenko, Natalia Kokriatskaia, Volodymyr Tverdomed, Natalia Kalashnik, Iryna Shvarts, Vladyslav Plisenko, Dmytro Zhuk, Saule Kumargazhanova, LOCAL DIFFERENCE THRESHOLD LEARNING IN FILTERING NORMAL WHITE NOISE , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 13 No. 2 (2023)
- Yelena Blinayeva, Saule Smailova, MODELING OF PROCESSES IN CRUDE OIL TREATED WITH LOW-FREQUENCY SOUNDS , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 9 No. 2 (2019)
- Volodymyr Mykhalevych, Yurii Dobraniuk, Victor Matviichuk, Volodymyr Kraievskyi, Oksana Тiutiunnyk, Saule Smailova, Ainur Kozbakova, A COMPARATIVE STUDY OF VARIOUS MODELS OF EQUIVALENT PLASTIC STRAIN TO FRACTURE , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 13 No. 1 (2023)
- Anna Vitiuk, Leonid Polishchuk, Nataliia B. Savina, Oksana O. Adler, Gulzhan Kashaganova, Saule Kumargazhanova, ENGINEERING AND TECHNICAL ASSESSMENT OF THE COMPETITIVENESS OF UKRAINIAN MECHANICAL ENGINEERING ENTERPRISES BASED ON THE APPLICATION OF REGRESSION MODELS , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 13 No. 3 (2023)
- Vira Petruk, Olena Prozor, Yuliia Sabadosh, Iryna Baranovska, Maksim Palii, Yevheniia Moroz, Saule Kumargazhanova, Dinara Mussayeva, STATISTICAL METHODS FOR EVALUATING EXPERIMENTAL DATA ON THE USE OF MATHEMATICAL COMPETENCIES IN STUDY FOR A RESILIENT ECONOMY , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 13 No. 2 (2023)