TENSOR AND VECTOR APPROACHES TO OBJECTS RECOGNITION BY INVERSE FEATURE FILTERS

Roman Kvуetnyy

rkvetny@sprava.net
Vinnytsia National Technical University (Ukraine)
https://orcid.org/0000-0002-9192-9258

Yuriy Bunyak


Vinnytsia Mykhailo Kotsiubynskyi State Pedagogical University (Ukraine)
https://orcid.org/0000-0002-0862-880X

Olga Sofina


Vinnitsia National Technical University (Ukraine)
https://orcid.org/0000-0003-3774-9819

Volodymyr Kotsiubynskyi


Vinnitsia National Technical University (Ukraine)
https://orcid.org/0000-0001-6759-5078

Tetiana Piliavoz


Vinnitsia National Technical University (Ukraine)
https://orcid.org/0000-0001-7535-7360

Olena Stoliarenko


Vinnytsia Mykhailo Kotsiubynskyi State Pedagogical University (Ukraine)
https://orcid.org/0000-0002-1899-8089

Saule Kumargazhanova


D. Serikbayev East Kazakhstan Technical University (Kazakhstan)
https://orcid.org/0000-0002-6744-4023

Abstract

The investigation of the extraction of image objects features by filters based on tensor and vector data presentation is considered. The tensor data is obtained as a sum of rank-one tensors, given by the tensor product of the vector of lexicographic representation of image fragments pixels with itself. The accumulated tensor is approximated by one rank tensor obtained using singular values decomposition. It has been shown that the main vector of the decomposition can be considered as the object feature vector. The vector data is obtained by accumulating analogous vectors of image fragments pixels. The accumulated vector is also considered as an object feature. The filter banks of a set of objects are obtained by regularized inversion of the matrices compiled by object features vectors. Optimized regularization of the inversion is used to expand the regions of object features capture with minimal error. The object fragments and corresponding feature vectors are selected through a training iterative process. The tensor and vector approaches create two channels for recognition. High efficiency of object recognition can be achieved by choosing the filter capture band and creating filter branches according to the given bands. The filters create a convolutional network to recognize a set of objects. It has been shown that the obtained filters have an advantage over known correlation filters when recognizing objects with small fragments.


Keywords:

objects recognition, objects feature, image data tensor, image data vector, inverse filters, optimized regularization

Andaló F. A. et al.: Shape feature extraction and description based on tensor scale. Pattern Recognition 43(1), 2010, 26–36 [https://doi.org/10.1016/j.patcog.2009.06.012].
  Google Scholar

Avrunin O. G. et al.: Features of image segmentation of the upper respiratory tract for planning of rhinosurgical surgery. 39th International Conference on Electronics and Nanotechnology, ELNANO 2019, 485–488.
  Google Scholar

Deng Y., Tang X., Qu A.: Correlation Tensor Decomposition and Its Application in Spatial Imaging Data. J. of the American Statistical Association 118(541), 2023, 440–456 [https://doi.org/10.1080/01621459.2021.1938083].
  Google Scholar

De Lathauwer L.: Signal Processing based on Multilinear Algebra. PhD thesis, Katholieke Universiteit Leuven, 1997.
  Google Scholar

Dubrovin B. A., Fomenko A. T., Novikov S. P.: Modern Geometry – Methods and Applications Pt. 1. Springer, New York 1992.
  Google Scholar

Comon P.: Tensor decomposition: State of the art and applications. V. J. G. McWhirter, I. K. Proudler (eds): Mathematics in Signal Processing, Oxford University Press, Oxford 2002.
  Google Scholar

Fernandez J. A. et al.: Zero-Aliasing Correlation Filters for Object Recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence 37(8), 2015, 1702–1715.
  Google Scholar

Fu Y., Huang T. S.: Image Classification Using Correlation Tensor Analysis. IEEE Trans on Image Processing 17(2), 2008, 226–234.
  Google Scholar

Grasedyck L.: Hierarchical Singular Value Decomposition of Tensors. SIAM Journal on Matrix Analysis and Applications 31(4), 2010 2029–2054 [https://doi.org/10.1137/090764189].
  Google Scholar

Kolda T. G., Bader B. W.: Tensor decompositions and applications. SIAM Rev. 51, 2009, 455–500.
  Google Scholar

Kvуetnyy R. et al.: Inverse correlation filters of objects features with optimized regularization for image processing. Proc. SPIE 12476, 2022, 124760Q [https://doi.org/10.1117/12.2664497].
  Google Scholar

Orazayeva A. et al.: Biomedical image segmentation method based on contour preparation. Proc. SPIE 12476, 2022, 1247605 [https://doi.org/10.1117/12.2657929].
  Google Scholar

Oseledets I. V.: Tensor-train decomposition. SIAM Journal on Scientific Computing 33(5), 2011, 2295–2317 [https://doi.org/10.1137/090752286].
  Google Scholar

Pavlov S. V.: Information Technology in Medical Diagnostics. W. Wójcik, A. Smolarz (eds), CRC Press, 2017.
  Google Scholar

Panagakis Y. et al.: Тensor Methods in Computer Vision and Deep Learning. Proceedings of the IEEE 105(5), 2021, 863–890 [https://doi.org/10.1109/JPROC.2021.3074329].
  Google Scholar

Phan A. H., Cichocki A.: Tensor decompositions for feature extraction and classification of high dimensional datasets. Nonlinear Theory and Its Applications IEICE 1(1), 2010, 37–68 [https://doi.org/10.1587/nolta.1.37].
  Google Scholar

Timchenko L. I. et al.: Q-processors for real-time image processing. Proc. SPIE 11581, 2020, 115810F [https://doi.org/10.1117/12.2580230].
  Google Scholar

Tucker L. R.: Some mathematical notes on three mode factor analysis. Psychometrika 31(3), 1966, 279–311 [https://doi.org/10.1007/BF02289464].
  Google Scholar

Vijaya Кumar B. V. K., Mahalanobis A., Juday R. D.: Correlation pattern recognition. Cambridge University Press, Cambridge 2005.
  Google Scholar

Wilkinson J. H., Reinsch C.: Handbook for Automatic Computation. Linear Algebra. Heidelberg New York, Springer Verlag, Berlin, 1974.
  Google Scholar

Download


Published
2024-03-31

Cited by

Kvуetnyy R., Bunyak, Y., Sofina, O., Kotsiubynskyi, V., Piliavoz, T., Stoliarenko, O., & Kumargazhanova, S. (2024). TENSOR AND VECTOR APPROACHES TO OBJECTS RECOGNITION BY INVERSE FEATURE FILTERS. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 14(1), 41–45. https://doi.org/10.35784/iapgos.5494

Authors

Roman Kvуetnyy 
rkvetny@sprava.net
Vinnytsia National Technical University Ukraine
https://orcid.org/0000-0002-9192-9258

Authors

Yuriy Bunyak 

Vinnytsia Mykhailo Kotsiubynskyi State Pedagogical University Ukraine
https://orcid.org/0000-0002-0862-880X

Authors

Olga Sofina 

Vinnitsia National Technical University Ukraine
https://orcid.org/0000-0003-3774-9819

Authors

Volodymyr Kotsiubynskyi 

Vinnitsia National Technical University Ukraine
https://orcid.org/0000-0001-6759-5078

Authors

Tetiana Piliavoz 

Vinnitsia National Technical University Ukraine
https://orcid.org/0000-0001-7535-7360

Authors

Olena Stoliarenko 

Vinnytsia Mykhailo Kotsiubynskyi State Pedagogical University Ukraine
https://orcid.org/0000-0002-1899-8089

Authors

Saule Kumargazhanova 

D. Serikbayev East Kazakhstan Technical University Kazakhstan
https://orcid.org/0000-0002-6744-4023

Statistics

Abstract views: 150
PDF downloads: 148


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Most read articles by the same author(s)