POLARIZATION TOMOGRAPHY OF THE POLYCRYSTALINNE STRUCTURE OF HISTOLOGICAL SECTIONS OF HUMAN ORGANS IN DETERMINATION OF THE OLD DAMAGE


Abstract

The results of algorithmic approbation of the technique of polarization tomography digital histological study of the age of damage to the myocardium and lung tissue based on the polarization reconstruction of linear birefringence maps are presented. Relationships between the temporal change in the magnitude of statistical moments of 1-4 orders characterizing the distribution of the magnitude of the degree of crystallization of histological sections of the myocardium and lung tissue and the duration of damage were determined. Established time intervals and accuracy of determining the prescription of damage to the myocardium and lung tissue.


Keywords

polarization; tomography; optical anisotropy; biological tissues

Avrunin, O. G. et al.: Possibilities of automated diagnostics of odontogenic sinusitis according to the computer tomography data. Sensors 21(4), 2021, 1–22. DOI: https://doi.org/10.3390/s21041198

Blatter C. et al.: Dove prism based rotating dual beam bidirectional Doppler oct. Biomed. Opt. Express 4, 2013, 1188–1203. DOI: https://doi.org/10.1364/BOE.4.001188

Hong Y.-J. et al.: Optically buffered Jones-matrix-based multifunctional optical coherence tomography with polarization mode dispersion correction. Biomed. Opt. Express 1, 2015, 225–243. DOI: https://doi.org/10.1364/BOE.6.000225

Isaieva O. A. et al.: Features of image analysis under UV-video dermoscopy. Proc. of SPIE 11456, 2020, 114560H. DOI: https://doi.org/10.1117/12.2569774

Kovalova A. et al.: Possibilities of automated image processing at optical capillaroscopy. Proc. of SPIE 11456, 2020, 114560G. DOI: https://doi.org/10.1117/12.2569772

Macdonald C., Meglinski I.: Backscattering of circular polarized light from a disperse random medium influenced by optical clearing. Laser Phys. Lett. 8(4), 2011, 324–328. DOI: https://doi.org/10.1002/lapl.201010133

Park B. H., de Boer J. F.: Polarization sensitive optical coherence tomography. In: Drexler W., Fujimoto J. G. (Eds.): Optical Coherence Tomography: Technology and Applications, 2nd ed. Springer Reference, Science + Business Media, New York 2015, 1055–1101. DOI: https://doi.org/10.1007/978-3-319-06419-2_34

Peyvasteh M., Tryfonyuk L. et al.: 3D Mueller-matrix-based azimuthal invariant tomography of polycrystalline structure within benign and malignant soft-tissue tumours. Laser Physics Letters 17(11), 2020, 115606. DOI: https://doi.org/10.1088/1612-202X/abbee0

Rovira J. R. et al.: Methods and resources for imaging polarimetry. Proc. of SPIE 8698, 2012, 86980T. DOI: https://doi.org/10.1117/12.2019732

Ushenko V. A. et al.: 3D Mueller matrix mapping of layered distributions of depolarisation degree for analysis of prostate adenoma and carcinoma diffuse tissues. Scientific Reports 11(1), 2021, 5162. DOI: https://doi.org/10.1038/s41598-021-83986-4

Ushenko V. A. et al.: Embossed topographic depolarisation maps of biological tissues with different morphological structures. Scientific Reports 11(1), 2021, 3871. DOI: https://doi.org/10.1038/s41598-021-83017-2

Wang W. et al.: Roles of linear and circular polarization properties and effect of wavelength choice on differentiation between ex vivo normal and cancerous gastric samples. J. Biomed. Opt. 19(4), 2014, 046020. DOI: https://doi.org/10.1117/1.JBO.19.4.046020

Wójcik W. et al.: Information Technology in Medical Diagnostics II. Taylor & Francis Group, CRC Press, Balkema book, London 2019. DOI: https://doi.org/10.1201/9780429057618

Yamanari M. et al.: Scleral birefringence as measured by polarizationsensitive optical coherence tomography and ocular biometric parameters of human eyes in vivo. Biomed. Opt. Express 5(5), 2014, 1391–1402. DOI: https://doi.org/10.1364/BOE.5.001391

Yasuno Y. et al.: Jones Matrix based polarization sensitive optical coherence tomography. In: Drexler W., Fujimoto J. G. (Eds.): Optical Coherence Tomography: Technology and Applications, 2nd ed. Springer Reference, Science + Business Media, New York 2015, 1137–1162. DOI: https://doi.org/10.1007/978-3-319-06419-2_36

Download

Published : 2022-12-30


Litvinenko, O., Paliy, V., VуsotskaO., Vishtak, I., & Kumargazhanova, S. (2022). POLARIZATION TOMOGRAPHY OF THE POLYCRYSTALINNE STRUCTURE OF HISTOLOGICAL SECTIONS OF HUMAN ORGANS IN DETERMINATION OF THE OLD DAMAGE. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 12(4), 31-34. https://doi.org/10.35784/iapgos.3247

Olexandra Litvinenko  sawasawa901@gmail.com
Higher State Educational Institution of Ukraine „Bukovynian State Medical University”  Ukraine
http://orcid.org/0000-0003-3897-6765
Victor Paliy 
National Aerospace University H.E. Zhukovsky „Kharkiv Aviation Institute”  Ukraine
http://orcid.org/0000-0002-2289-1786
Olena Vуsotska 
National Pirogov Memorial University of Vinnytsia  Ukraine
http://orcid.org/0000-0003-3723-9771
Inna Vishtak 
Vinnytsia National Technical University  Ukraine
http://orcid.org/0000-0001-5646-4996
Saule Kumargazhanova 
D. Serikbayev East Kazakhstan Technical University  Kazakhstan
http://orcid.org/0000-0002-6744-4023