FREQUENCY MODULATION APPROACH BASED ON SPLIT-RING RESONATOR LOADED BY VARACTOR DIODE
Dmytro Vovchuk
dimavovchuk@gmail.comYuriy Fedkovych Chernivtsi National University (Ukraine)
Serhii Haliuk
Yuriy Fedkovych Chernivtsi National University, Department of Radio Engineering and Information Security, Chernivtsi, Ukraine (Ukraine)
http://orcid.org/0000-0003-3836-2675
Pavlo Robulets
Yuriy Fedkovych Chernivtsi National University, Department of Radio Engineering and Information Security, Chernivtsi, Ukraine (Ukraine)
Leonid Politanskyi
Yuriy Fedkovych Chernivtsi National University, Department of Radio Engineering and Information Security, Chernivtsi, Ukraine (Ukraine)
http://orcid.org/0000-0001-6804-9837
Abstract
In the paper, an approach to frequency modulation is presented using a split-ring resonator (SRR) loaded by a varactor diode. The modulation occurs due to the continuous time variation of capacitance of the varactor diode via changing of its bias voltage by the signal which is necessary to modulate. The modulation signal is used for bias voltage. As a source of a carrier signal, one more extra magnetic loop antenna is utilized which is coupled with the SRR via near-field interaction. Investigation of two types of signals (harmonic and chaotic) was performed for modulation in the paper. It is shown that it is possibile to provide the frequency modulation with deviation Δfd = ±80 MHz which covers the frequency range 0.95…1.11 GHz for a 1 GHz carrier signal when a SMV1231 varactor diode is used. The major advantages of the suggested approach are the very simple design and ability to easily define the required values of frequency deviation through tuning of the bias voltage magnitude range of the varactor diode. Therefore, the presented investigation and results can be useful in the manufacturing of low-cost radio components.
Keywords:
frequency modulation, varactor diode, split-ring resonator, frequency range, frequency deviationReferences
Aydin K., Bulu I., Guven K., Kafesaki M., Soukoulis C. M., and Ozbay E.: Investigation of magnetic resonances for different split-ring resonator parameters and design. New Journal of Physics 7(168)/2005, 1–15.
DOI: https://doi.org/10.1088/1367-2630/7/1/168
Google Scholar
Baraclough M., Hooper I. R., Barnes W. L.: Investigation of the coupling between tunable split-ring resonators. Physical Review B 98/2018, 085146.
DOI: https://doi.org/10.1103/PhysRevB.98.085146
Google Scholar
Binns K.J., Lawrenson P.J.: Analysis and Computation of Electric and Magnetic Field Problems. Pergamon International Library of Science, Technology, Engineering and Social Studies, 2013.
Google Scholar
Ebrahimi A., Withayachumnankul W., Al-Sarawi S., and Abbott D.: High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization. IEEE Sensors Journal 14(5)/2014, 1345–1351.
DOI: https://doi.org/10.1109/JSEN.2013.2295312
Google Scholar
Freire M. J., Marques R., Jelinek L.: Experimental demonstration of a µ = -1 metamaterial lens for magneticresonance imaging M. J. Freire. Applied Physics Letters 93/2008, 231108 (1–4).
DOI: https://doi.org/10.1063/1.3043725
Google Scholar
Gevorgian S. S. and Mironenko I. G.: Asymmetric coplanar-strip transmission lines for MMIC and integrated optic applications. Electron. Lett. 26(1916)/1990.
DOI: https://doi.org/10.1049/el:19901234
Google Scholar
Girich A.A.: Left-Handed Metamaterial based on the Complementary Split-Ring Resonators Tuned with Varactor Diodes. Ukrainian Journal of Physics 62(10)/2017, 903–907.
DOI: https://doi.org/10.15407/ujpe62.10.0903
Google Scholar
Imade Y., Ulbricht R., Tomoda M., Matsuda O., Seiutinas G., Juodkazis S., Wright O.B.: Gigahertz Optomechanical Modulation by Split-Ring-Resonator Nanophotonic Meta-Atom Array. Nano Letters 17/2017, 6684–6689.
DOI: https://doi.org/10.1021/acs.nanolett.7b02663
Google Scholar
Kitayama D., Yaita M., Song H.-J., Nosaka H.: High-Speed and High-ON/OFF Ratio Split-Ring-Resonator-Based Active Metamaterial using Varactor Diodes. 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), 2162–2035, 2016.
DOI: https://doi.org/10.1109/IRMMW-THz.2016.7758984
Google Scholar
Liang Y., Boon Ch., Li Ch. et al.: Design and Analysis of D-Band Om-Chip Modulator and Signal Source Based on Split-Ring Resonator. IEEE Transactions on Very Large Scale Integration Systems 27(7)/2019, 1513–1526.
DOI: https://doi.org/10.1109/TVLSI.2019.2906680
Google Scholar
Liang Y., Yu H., Zhang W., Lin F.: CMOS Sub-THz On-Chip Modulator by Stacked Split Ring Resonator with High-extinction Ratio. IEEE International Symposium on Radio-Frequency Integration Technology 2015, 67–69.
DOI: https://doi.org/10.1109/RFIT.2015.7377889
Google Scholar
Liu P. et al.: Tunable meta-atom using liquid metal embedded in stretchable polymer. J. Appl. Phys. 118(1)/2015, 014504.
DOI: https://doi.org/10.1063/1.4926417
Google Scholar
Liu W., Sun H., Xu L.: A Microwave Method for Dielectric Characterization Measurement of Small Liquids Using a Metamaterial-Based Sensor. Sensors 18/2005, 1438(1–10).
DOI: https://doi.org/10.3390/s18051438
Google Scholar
Marques R., Medina F., Rafii-el-Idrissi R.: Role of bianisotropy in negative permeability and left-handed metamaterials. Phys. Rev. B 65/2002, 144440 (1–6).
DOI: https://doi.org/10.1103/PhysRevB.65.144440
Google Scholar
Marques R., Baena J. D., Martel J., Medina F., Sorolla M., Martin F.: Novel small resonant electromagnetic particles for metamaterial and filter design. International Conference on Electromagnetic in Advanced Applications (ICEAA’03), Torino, Italy 2015, 439–442, 2005.
Google Scholar
Marques R., Martin F.: Wire media: Metamaterial Handbook. Theory and Phenomena of Metamaterials 2009. Chapter 16-1, CRC Press, Boca Raton.
Google Scholar
Marques R., Mesa F., Martel J., Medina F.: Comparative analysis of edge- and broadside- coupled split ring resonators for metamaterial design - theory and experiments. IEEE Transactions on Antennas and Propagation, 51/2003, 2572–2581.
DOI: https://doi.org/10.1109/TAP.2003.817562
Google Scholar
Moser H.O., Casse B.D.F., Wilhelmi O., Saw B.T.: Terahertz Response of a Microfabricated Rod-Split_Ring Resonator Electromagnetic Metamaterial. Physical Review Letters 94/2005, 063901(1–4).
DOI: https://doi.org/10.1103/PhysRevLett.94.063901
Google Scholar
Puentes M., Schubler M., Jakoby R.: 2D sensor array based on Split Ring Resonators for monitoring of organic tissue. Sensors 2011, 12491246.
DOI: https://doi.org/10.1109/ICSENS.2011.6126955
Google Scholar
Rosa E. B.: The self and mutual inductances of linear conductors. Bulletin of the Bureau of Standards 4, 80/1908, 301–344.
DOI: https://doi.org/10.6028/bulletin.088
Google Scholar
Salim A., Lim S.: Complementary Split-Ring Resonator-Loaded Microfluidic Ethanol Chemical Sensor. Sensors, 16/2016, 1802(1–13).
DOI: https://doi.org/10.3390/s16111802
Google Scholar
Schuster Ch.: Fast and Accurate Tuning of a Cross-Coupled Split-Ring Resonator Filter. GeMiC-2018, March 12–14, 2018, Freiburg, Germany, 134–137.
DOI: https://doi.org/10.23919/GEMIC.2018.8335047
Google Scholar
Silva S. R., Shields A. D., Zhou J.: Tunable Optical Bistability and Optical Switching by Nonlinear Metamaterials. Material Science 2017.
Google Scholar
Veselago V. G.: The Electrodynamics of Substances with Simultaneously negative Values of ε and μ. Soviet Physics Uspekhi 10(4)/1967, 509–514.
DOI: https://doi.org/10.1070/PU1968v010n04ABEH003699
Google Scholar
Vovchuk D., Khobzei M., Khavruniak M.: Sensing Properties of SRR: influence of finger touching. Int. Scientific-Practical Conference PIC S&T’2019, 8–11 October 2019, Kyiv, Ukraine, 799–802.
DOI: https://doi.org/10.1109/PICST47496.2019.9061371
Google Scholar
Wang Q., Mao D., Dong L.: Thermomechanically Tunable Infrared Metamaterials Using Asymmetric Split-Ring Resonators. Journal of Microelectromechanical Systems 26(6)/2017, 1–3.
DOI: https://doi.org/10.1109/JMEMS.2017.2764054
Google Scholar
Ye-xin S., Jiu-sheng L., Le Z.: Graphene-integrated split-ring resonator terahertz modulator. Opt. Quant. Electron., 350/2017, 1–9.
DOI: https://doi.org/10.1007/s11082-017-1198-x
Google Scholar
Zheludev N.I., Kivshar Yu.S.: From metamaterials to metadevices. Nature Materials 11/2012, 917–924.
DOI: https://doi.org/10.1038/nmat3431
Google Scholar
https://pdf1.alldatasheet.com/datasheet-pdf/view/155289/SKYWORKS/SMV1231.html
Google Scholar
Authors
Serhii HaliukYuriy Fedkovych Chernivtsi National University, Department of Radio Engineering and Information Security, Chernivtsi, Ukraine Ukraine
http://orcid.org/0000-0003-3836-2675
Authors
Pavlo RobuletsYuriy Fedkovych Chernivtsi National University, Department of Radio Engineering and Information Security, Chernivtsi, Ukraine Ukraine
Authors
Leonid PolitanskyiYuriy Fedkovych Chernivtsi National University, Department of Radio Engineering and Information Security, Chernivtsi, Ukraine Ukraine
http://orcid.org/0000-0001-6804-9837
Statistics
Abstract views: 379PDF downloads: 235
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Most read articles by the same author(s)
- Serhii Haliuk, Oleh Krulikovskyi, Vitalii Vlasenko, STUDYING THE PROPERTIES OF PIXELS PERMUTATIONS BASED ON DISCRETIZED STANDARD MAP , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 10 No. 1 (2020)
- Mykola Khobzei, Dmytro Vovchuk, Magdalena Michalska, OVERVIEW OF APPLICATIONS OF WIRE MEDIUM IN RADIO ENGINEERING MEANS , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 8 No. 4 (2018)
- Dmytro Vovchuk, Serhii Haliuk, Leonid Politanskyy, DISTORTIONLESS SIGNALS TRANSFER THROUGH A WIRE MEDIA METASTRUCTURE , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 8 No. 1 (2018)
- Oleh Krulikovskyi, Serhii Haliuk, Ihor Safronov, Valentyn Lesinskyi, TWO-DIMENSIONAL HYPERCHAOTIC MAP FOR CHAOTIC OSCILLATIONS , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 14 No. 3 (2024)