NEUROBIOLOGICZNE WŁAŚCIWOŚCI STRUKTURY SIECI RÓWNOLEGŁO-HIERARCHICZNEJ I JEJ WYKORZYSTANIE DO ROZPOZNAWANIA WZORCÓW

Leonid Timchenko

tumchenko_li@gsuite.duit.edu.ua
State University of Infrastructure and Technology (Ukraina)
https://orcid.org/0000-0001-5056-5913

Natalia Kokriatskaia


State University of Infrastructure and Technology (Ukraina)
https://orcid.org/0000-0001-8025-8172

Volodymyr Tverdomed


State University of Infrastructure and Technology (Ukraina)

Anatolii Horban


State University of Infrastructure and Technology (Ukraina)

Oleksandr Sobovyi


State University of Infrastructure and Technology (Ukraina)
https://orcid.org/0000-0002-6287-6193

Liudmyla Pogrebniak


Kruty Heroes Military Institute of Telecommunications and Information Technologies (Ukraina)

Nelia Burlaka


Vinnytsia Mykhailo Kotsiubynskyi State Pedagogical University (Ukraina)

Yurii Didenko


State University of Infrastructure and Technology (Ukraina)

Maksym Kozyr


State University of Infrastructure and Technology (Ukraina)
https://orcid.org/0009-0007-2564-6552

Ainur Kozbakova


Almaty Technological University, The Institute of Institute of Information and Computational Technologies CS MHES (Ukraina)

Abstrakt

W artykule przedstawiono analizę danych neurobiologicznych dotyczących istnienia struktury sieci równoległo-hierarchicznej. Omówiono metodę transformacji równoległo-hierarchicznej opartej na kodowaniu populacyjnym i jej zastosowanie do zadania rozpoznawania wzorców. Na podstawie przeprowadzonej analizy można stwierdzić, że za pomocą zaproponowanych metod można mierzyć parametry geometryczne i właściwości obrazów, co może znacznie zwiększyć wydajność przetwarzania, w szczególności szacowania środka masy na podstawie charakterystyki momentu. Wyniki eksperymentalne pokazują, że ze względu na różne czynniki destabilizujące, dokładny pomiar współrzędnych środka energii obrazów plamki wiązki laserowej jest trudny. Jednak szkolenie sieci PI i klasyfikowanie fragmentów na „dobre” i „złe” może znacznie zwiększyć dokładność tych pomiarów.


Słowa kluczowe:

sieć równoległo-hierarchiczna, kodowanie populacji, zadanie rozpoznawania wzorców, lasercentrum obrazów, postępowanie z obrazami

[1] Avrunin O. G. et al.: Research Active Posterior Rhinomanometry Tomography Method for Nasal Breathing Determining Violations. Sensors 21, 2021, 8508 [https://doi.org/10.3390/s21248508].
DOI: https://doi.org/10.3390/s21248508   Google Scholar

[2] Avrunin O. G. et al.: Features of image segmentation of the upper respiratory tract for planning of rhinosurgical surgery. IEEE 39th International Conference on Electronics and Nanotechnology – ELNANO 2019, 485–488.
DOI: https://doi.org/10.1109/ELNANO.2019.8783739   Google Scholar

[3] Chapelle O., Manavoglu E., Rosales R.: Simple and scalable response prediction for display advertising. Transactions on Intelligent Systems and Technology – TIST 5(4), 2015, 2015, 1–34.
DOI: https://doi.org/10.1145/2532128   Google Scholar

[4] Comaniciu D., Ramesh V., Meer P.: Real-Time Tracking of Non-Rigid Objects Using Mean Shift. Conference on CVPR, 2, 2000, 1–8.
DOI: https://doi.org/10.1109/CVPR.2000.854761   Google Scholar

[5] Kukharchuk V. V. et al.: Features of the angular speed dynamic measurements with the use of an encoder. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Srodowiska – IAPGOS 12(3), 2022, 20–26.
DOI: https://doi.org/10.35784/iapgos.3035   Google Scholar

[6] Kuusilinna K. et al.: Configurable parallel memory architecture for multimedia computers. Journal of Systems Architecture 47(14–15), 2002, 1089–1115.
DOI: https://doi.org/10.1016/S1383-7621(02)00059-0   Google Scholar

[7] Kvуetnyy R. et al.: Inverse correlation filters of objects features with optimized regularization for image processing. Proc. SPIE 12476, 2022, 124760Q.
DOI: https://doi.org/10.1117/12.2664497   Google Scholar

[8] Lanitis A., Taylor C. J., Cootes T. F.: Automatic Face Identification System Using Flexible Appearance Models. Image and Vision Computing 13(5), 1995, 393–401.
DOI: https://doi.org/10.1016/0262-8856(95)99726-H   Google Scholar

[9] Orazayeva A. et al.: Biomedical image segmentation method based on contour preparation. Proc. SPIE 12476, 2022, 1247605.
  Google Scholar

[10] Rabinovich Z. L., Voronkov G. S.: Representation and processing of knowledge in the interaction of human sensory and linguistic neurosystems. Cybernetics and System Analysis 2, 1998, 3–11.
  Google Scholar

[11] Romanyuk O. et al.: A function-based approach to real-time visualization using graphics processing units. Proc. SPIE 11581, 2020, 115810E.
  Google Scholar

[12] Sree Vani M.: Prediction of Mobile Ad Click Using Supervised Classification Algorithms. International Journal of Computer Science and Information Technologies 7(2), 2016, 623–625.
  Google Scholar

[13] Timchenko L. I. et al.: Multi-stage parallel-hierarchical network as a model of a neural-like computing scheme. Cybernetics and system analysis 2, 2000, 114–134.
DOI: https://doi.org/10.1007/BF02678673   Google Scholar

[14] Timchenko L. et al.: New methods of network modelling using parallel-hierarchical networks for processing data and reducing erroneous calculation risk. CEUR Workshop Proceedingsthis link is disabled 2805, 2020, 201–212.
  Google Scholar

[15] Tymchenko L. et al.: Development of a method of processing images of laser beam bands with the use of parallelhierarchic networks. Eastern-European Journal of Enterprise Technologiesthis link is disabled 6(9-102), 2019, 21–27.
DOI: https://doi.org/10.15587/1729-4061.2019.188568   Google Scholar

[16] Vasilevskyi O. M.: Assessing the level of confidence for expressing extended uncertainty: a model based on control errors in the measurement of ion activity. Acta IMEKO 10(2), 2021, 199–203.
DOI: https://doi.org/10.21014/acta_imeko.v10i2.810   Google Scholar

[17] Vasilevskyi O. et al.: A new approach to assessing the dynamic uncertainty of measuring devices. Proc. SPIE 2018, 10808, 108082E.
  Google Scholar

[18] WójcikW. et al.: Information Technology in Medical Diagnostics II. Taylor & Francis Group.CRC Press, Balkema Book, London 2019.
  Google Scholar


Opublikowane
2024-09-30

Cited By / Share

Timchenko, L., Kokriatskaia, N., Tverdomed, V., Horban, A., Sobovyi, O., Pogrebniak, L., … Kozbakova, A. (2024). NEUROBIOLOGICZNE WŁAŚCIWOŚCI STRUKTURY SIECI RÓWNOLEGŁO-HIERARCHICZNEJ I JEJ WYKORZYSTANIE DO ROZPOZNAWANIA WZORCÓW. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 14(3), 35–38. https://doi.org/10.35784/iapgos.6212

Autorzy

Leonid Timchenko 
tumchenko_li@gsuite.duit.edu.ua
State University of Infrastructure and Technology Ukraina
https://orcid.org/0000-0001-5056-5913

Autorzy

Natalia Kokriatskaia 

State University of Infrastructure and Technology Ukraina
https://orcid.org/0000-0001-8025-8172

Autorzy

Volodymyr Tverdomed 

State University of Infrastructure and Technology Ukraina

Autorzy

Anatolii Horban 

State University of Infrastructure and Technology Ukraina

Autorzy

Oleksandr Sobovyi 

State University of Infrastructure and Technology Ukraina
https://orcid.org/0000-0002-6287-6193

Autorzy

Liudmyla Pogrebniak 

Kruty Heroes Military Institute of Telecommunications and Information Technologies Ukraina

Autorzy

Nelia Burlaka 

Vinnytsia Mykhailo Kotsiubynskyi State Pedagogical University Ukraina

Autorzy

Yurii Didenko 

State University of Infrastructure and Technology Ukraina

Autorzy

Maksym Kozyr 

State University of Infrastructure and Technology Ukraina
https://orcid.org/0009-0007-2564-6552

Autorzy

Ainur Kozbakova 

Almaty Technological University, The Institute of Institute of Information and Computational Technologies CS MHES Ukraina

Statystyki

Abstract views: 65
PDF downloads: 36


Licencja

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe.


Inne teksty tego samego autora