COUPLING BOUNDARY ELEMENT METHOD WITH LEVEL SET METHOD TO SOLVE INVERSE PROBLEM

Tomasz Rymarczyk

tomasz.rymarczyk@netrix.com.pl
Netrix S.A., Research and Development Center (Poland)

Paweł Tchórzewski


Netrix S.A., Research and Development Center (Poland)

Jan Sikora


Lublin University of Technology, Institute of Electronics and Information Technology; Electrotechnical Institute (Poland)

Abstract

The boundary element method and the level set method can be used in order to solve the inverse problem for electric field. In this approach the adjoint equation arises in each iteration step. Results of the numerical calculations show that the boundary element method can be applied successfully to obtain approximate solution of the adjoint equation. The proposed solution algorithm is initialized by using topological sensitivity analysis. Shape derivatives and material derivatives have been incorporated with the level set method to investigate shape optimization problems. The shape derivative measures the sensitivity of boundary perturbations. The coupled algorithm is a relatively new procedure to overcome this problem. Experimental results have demonstrated the efficiency of the proposed approach to achieve the solution of the inverse problem.


Keywords:

inverse problem, boundary element method, level set method

Allaire G., Gournay F. De, Jouve F., Toader A. M.: Structural optimization using topological and shape sensitivity via a level set method, Control and Cybernetics, vol. 34, 2005, 59–80.
  Google Scholar

Chen W., Cheng J., Lin W.: A level set method to reconstruct the discontinuity of the conductivity in EIT, Science in China Series A: Mathematics, vol. 52, 2009.
  Google Scholar

Ito K., Kunish K., Li Z.: The Level-Set Function Approach to an Inverse Interface Problem, Inverse Problems, vol. 17, no. 5, 2001, 1225–1242.
  Google Scholar

Jabłoński P.: Metoda elementów brzegowych w analizie pola elektromagnetycznego, Wydawnictwo Politechniki Częstochowskiej, 2003.
  Google Scholar

Osher S., Sethian J. A.: Fronts Propagating with Curvature Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations, Journal of Computational Physics, vol. 79, 1988, 12–49.
  Google Scholar

Osher S., Santosa F.: Level set methods for optimization problems involving geometry and constraints. Frequencies of a two-density inhomogeneous drum, Journal of Computational Physics, vol. 171, 2001, 272–288.
  Google Scholar

Osher S., Fedkiw R.: Level Set Methods and Dynamic Implicit Surfaces, Springer New York, 2003.
  Google Scholar

Rymarczyk T.: Using electrical impedance tomography to monitoring flood banks, International Journal of Applied Electromagnetics and Mechanics 45, 2014, 489–494.
  Google Scholar

Rymarczyk T.: Characterization of the shape of unknown objects by inverse numerical methods, Przegląd Elektrotechniczny, R. 88, 7b, 2012, 138-140.
  Google Scholar

Rymarczyk T., Sikora J., Waleska B.: Coupled Boundary Element Method and Level Set Function for Solving Inverse Problem in EIT, 7th World Congress on Industrial Process Tomography, WCIPT7, Krakow 2013.
  Google Scholar

Rymarczyk:T., Adamkiewicz P., Duda K., Szumowski J., Sikora J.: New Electrical Tomographic Method to Determine Dampness in Historical Buildings, Achieve of Electrical Engineering, v.65, 2/2016, 273–283
  Google Scholar

Sethian J.A.: Level Set Methods and Fast Marching Methods, Cambridge Univeristy Press, 1999.
  Google Scholar

Sikora J.: Boundary Element Method for Impedance and Optical Tomography, Warsaw University of Technology Publisher, 2007.
  Google Scholar

Smolik W, Forward Problem Solver for Image Reconstruction by Nonlinear Optimization in Electrical Capacitance Tomography, Flow Measurement and Instrumentation, Vol. 21, Issue 1, 2010, 70–77.
  Google Scholar

Wajman R., Fiderek P., Fidos H., Jaworski T., Nowakowski J., Sankowski D., Banasiak R.: Metrological evaluation of a 3D electrical capacitance tomography measurement system for two-phase flow fraction determination; Meas. Sci. Technol. Vol. 24, 2013, No. 065302.
  Google Scholar

Tai C., Chung E., Chan T.: Electrical impedance tomography using level set representation and total variational regularization, Journal of Computational Physics, vol. 205, no. 1, 2005, 357–372.
  Google Scholar

Vese L., Chan T.: A new multiphase level set framework for image segmentation via the Mumford and Shah model. CAM Report 01-25, UCLA Math. Dept., 2001.
  Google Scholar

Download


Published
2017-03-03

Cited by

Rymarczyk, T. ., Tchórzewski, P., & Sikora, J. (2017). COUPLING BOUNDARY ELEMENT METHOD WITH LEVEL SET METHOD TO SOLVE INVERSE PROBLEM . Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 7(1), 80–83. https://doi.org/10.5604/01.3001.0010.4589

Authors

Tomasz Rymarczyk 
tomasz.rymarczyk@netrix.com.pl
Netrix S.A., Research and Development Center Poland

Authors

Paweł Tchórzewski 

Netrix S.A., Research and Development Center Poland

Authors

Jan Sikora 

Lublin University of Technology, Institute of Electronics and Information Technology; Electrotechnical Institute Poland

Statistics

Abstract views: 258
PDF downloads: 65


Most read articles by the same author(s)

<< < 1 2 3 4 > >>