NOVEL HYBRID ALGORITHM USING CONVOLUTIONAL AUTOENCODER WITH SVM FOR ELECTRICAL IMPEDANCE TOMOGRAPHY AND ULTRASOUND COMPUTED TOMOGRAPHY
Article Sidebar
Open full text
Issue Vol. 13 No. 2 (2023)
-
NOVEL HYBRID ALGORITHM USING CONVOLUTIONAL AUTOENCODER WITH SVM FOR ELECTRICAL IMPEDANCE TOMOGRAPHY AND ULTRASOUND COMPUTED TOMOGRAPHY
Łukasz Maciura, Dariusz Wójcik, Tomasz Rymarczyk, Krzysztof Król4-9
-
ANALYSIS OF POWER AND ENERGY PARAMETERS OF THE CONVEYOR INFRARED DRYER OF OIL-CONTAINING RAW MATERIALS
Igor Palamarchuk, Vladyslav Palamarchuk, Vadim Paziuk, Ruslan Hulevych, Aliya Kalizhanova, Magzhan Sarsembayev10-14
-
OPTIMIZATION OF RESOURCE ALLOCATION, EXPOSURE TIME AND ROTARY SPEED OF INCUBATIVE EGGS
Dmytro Milenin, Mykola Lysychenko, Andriy Milenin, Leonid Koval, Saltanat Amirgaliyeva, Maxatbek Satymbekov, Saltanat Adikanova15-19
-
DEVELOPMENT OF AN APPLICATION FOR THE THERMAL PROCESSING OF OIL SLIME IN THE INDUSTRIAL OIL AND GAS SECTOR
Gulnar Balakayeva, Gaukhar Kalmenova, Dauren Darkenbayev, Christofer Phillips20-26
-
AUTOMATED DEFINITION OF THE DISCRETE ELEMENTS INTERACTIONS IN WORKSPACE OF EQUIPMENT
Gregory Tymchyk, Volodymyr Skytsiouk, Tatiana Klotchko, Leonid Polishchuk, Anatolii Hrytsak, Saule Rakhmetullina, Beibut Amirgaliyev27-35
-
TONTOR ZONES MODEL FOR AUTOMATIVE OBJECT MONITORING
Gregory Tymchyk, Volodymyr Skytsiouk, Tatiana Klotchko, Roman Akselrod, Valerii Shenfeld, Aliya Kalizhanova, Didar Yedilkhan, Gaukhar Borankulova36-43
-
THEORETICAL AND EXPERIMENTAL SUBSTANTIATION OF THE EXTRACTION PROCESS WITH THINNING BIMETALLIC TUBULAR ELEMENTS OF DISSIMILAR METALS AND ALLOYS
Viacheslav Titov, Olexandr Mozghovyi, Ruslan Borys, Mykola Bogomolov, Yedilkhan Amirgaliyev, Zhalau Aitkulov44-49
-
THE APPLICATION OF MACHINE LEARNING ON THE SENSORS OF SMARTPHONES TO DETECT FALLS IN REAL-TIME
Achraf Benba, Mouna Akki, Sara Sandabad50-55
-
CONVOLUTIONAL NEURAL NETWORKS FOR EARLY COMPUTER DIAGNOSIS OF CHILD DYSPLASIA
Yosyp Bilynsky, Aleksandr Nikolskyy, Viktor Revenok, Vasyl Pogorilyi, Saule Smailova, Oksana Voloshina, Saule Kumargazhanova56-63
-
CARDIOMETABOLIC RISK PREDICTION IN PATIENTS WITH NON-ALCOHOLIC FATTY LIVER DISEASE COMBINED WITH SUBCLINICAL HYPOTHYROIDISM
Olena Kolesnikova, Olena Vysotska, Anna Potapenko, Anastasia Radchenko, Anna Trunova, Natalia Virstyuk, Liudmyla Vasylevska-Skupa, Aliya Kalizhanova, Nazerka Mukanova64-68
-
LOCAL DIFFERENCE THRESHOLD LEARNING IN FILTERING NORMAL WHITE NOISE
Leonid Timchenko, Natalia Kokriatskaia, Volodymyr Tverdomed, Natalia Kalashnik, Iryna Shvarts, Vladyslav Plisenko, Dmytro Zhuk, Saule Kumargazhanova69-73
-
MODELING AND ANALYSIS OF THE CHARACTERISTICS OF MULTICHANNEL AND MULTI-NODE COMPUTER NETWORKS WITH PRIORITY SERVICE
Zakir Nasib Huseynov, Mahil Isa Mammadov, Togrul Atabay Ismayilov74-77
-
STATISTICAL METHODS FOR EVALUATING EXPERIMENTAL DATA ON THE USE OF MATHEMATICAL COMPETENCIES IN STUDY FOR A RESILIENT ECONOMY
Vira Petruk, Olena Prozor, Yuliia Sabadosh, Iryna Baranovska, Maksim Palii, Yevheniia Moroz, Saule Kumargazhanova, Dinara Mussayeva78-85
-
SIMULATION OF THE INFLUENCE OF INVESTMENT AND INNOVATION ACTIVITIES ON ENSURING THE INTERNATIONAL COMPETITIVENESS OF COUNTRIES
Olena Liutak, Olena Baula, Anatolii Tkachuk86-92
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
Main Article Content
DOI
Authors
tomasz.rymarczyk@netrix.com.pl
Abstract
This paper presents a new hybrid algorithm using multiple Support Vector Machines models with convolutional autoencoder to Electrical Impedance Tomography, and Ultrasound Computed Tomography image reconstruction. The ultimate hybrid solution uses multiple SVM models to convert input measurements to individual autoencoder codes representing a given scene then the decoder part of the autoencoder can reconstruct the scene
Keywords:
References
Aziz Taha A., Hanbury A.: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Medical Imaging 15(29), 2015, 1–28. DOI: https://doi.org/10.1186/s12880-015-0068-x
Chen B. et al.: Extended Joint Sparsity Reconstruction for Spatial and Temporal ERT Imaging. Sensors 18, 2018, 4014. DOI: https://doi.org/10.3390/s18114014
Chen P. H. et al.: A tutorial on ν-support vector machines. Applied Stochastic Models in Business and Industry 21, 2005, 111–136. DOI: https://doi.org/10.1002/asmb.537
Chen Z. et al.: Application of Deep Neural Network to the Reconstruction of Two-Phase Material Imaging by Capacitively Coupled Electrical Resistance Tomography. Electronics 10, 2021, 1058. DOI: https://doi.org/10.3390/electronics10091058
Duraj A., Korzeniewska E., Krawczyk A.: Classification algorithms to identify changes in resistance. Przegląd Elektrotechniczny 91(12), 2015, 82–84. DOI: https://doi.org/10.15199/48.2015.12.19
Dusek J., Mikulka J.: Measurement-Based Domain Parameter Optimization in Electrical Impedance Tomography Imaging. Sensors 21, 2021, 2507. DOI: https://doi.org/10.3390/s21072507
Fan Y. et al.: DDN: dual domain network architecture for non-linear ultrasound transmission tomography reconstruction. Proc. SPIE 11602, 2021, 1160209 [http://doi.org/10.1117/12.2580911]. DOI: https://doi.org/10.1117/12.2580911
Fan Y., Ying L.: Solving electrical impedance tomography with deep learning. Journal of Computational Physics 404, 2020, 109119. DOI: https://doi.org/10.1016/j.jcp.2019.109119
Fernandez-Fuentes X. et al.: Towards a Fast and Accurate EIT Inverse Problem Solver: A Machine Learning Approach. Electronics 7(12), 2018, 422. DOI: https://doi.org/10.3390/electronics7120422
Hamilton S. J., Hauptmann A.: Deep D – bar: Real time Electrical Impedance Tomography Imaging with Deep Neural Networks. IEEE Trans. Med. Imaging 37(10), 2018, 2367–2377. DOI: https://doi.org/10.1109/TMI.2018.2828303
Józefczak A. et al.: Ultrasound transmission tomography-guided heating with nanoparticles. Measurement 197, 2022, [http://doi.org/10.1016/j.measurement.2022.111345]. DOI: https://doi.org/10.1016/j.measurement.2022.111345
Kania K. et al.: Image reconstruction in ultrasound transmission tomography using the Fermat's Principle. Przegląd Elektrotechniczny 96(1), 2020, 186–189. DOI: https://doi.org/10.15199/48.2020.01.41
Khan T. A., Ling S.H.: Review on Electrical Impedance Tomography: Artificial Intelligence Methods and its Applications. Algorithms 12(5), 2019, 1–18. DOI: https://doi.org/10.3390/a12050088
Kłosowski G. et al.: Comparison of Machine Learning Methods for Image Reconstruction Using the LSTM Classifier in Industrial Electrical Tomography. Energies 14(21), 2021, 7269. DOI: https://doi.org/10.3390/en14217269
Kłosowski G. et al.: Maintenance of industrial reactors supported by deep learning driven ultrasound tomography. Przegląd Elektrotechniczny 98(4), 2022, 138–147. DOI: https://doi.org/10.17531/ein.2020.1.16
Kłosowski G. et al.: Neural hybrid tomograph for monitoring industrial reactors, Przegląd Elektrotechniczny 96(12), 2020, 190–193. DOI: https://doi.org/10.15199/48.2020.12.40
Kłosowski G. et al.: Quality Assessment of the Neural Algorithms on the Example of EIT-UST Hybrid Tomography. Sensors 20(11), 2020, 3324. DOI: https://doi.org/10.3390/s20113324
Kozłowski E. et al.: Logistic regression in image reconstruction in electrical impedance tomography, Przegląd Elektrotechniczny 96(5), 2020, 95–98. DOI: https://doi.org/10.15199/48.2020.05.19
Krawczyk A., Korzeniewska E.: Magnetophosphenes–history and contemporary implications. Przegląd Elektrotechniczny 94(1), 2018, 61–64. DOI: https://doi.org/10.15199/48.2018.12.52
Li X. et al.: An image reconstruction framework based on deep neural network for electrical impedance tomography. IEEE International Conference on Image Processing, Beijing, China, 2017. DOI: https://doi.org/10.1109/ICIP.2017.8296950
Li X. et. al.: A novel deep neural network method for electrical impedance tomography. Transactions of the Institute of Measurement and Control 41(14), 2019, 4035–4049. DOI: https://doi.org/10.1177/0142331219845037
Łukiański M., Wajman R.: The diagnostic of two-phase separation process using digital image segmentation algorithms. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 10(3), 2020, 5–8. DOI: https://doi.org/10.35784/iapgos.1544
Mosorov V. et al.: Plug Regime Flow Velocity Measurement Problem Based on Correlability Notion and Twin Plane Electrical Capacitance Tomography: Use Case. Sensors 21(6), 2021, 2189 [http://doi.org/10.3390/s21062189]. DOI: https://doi.org/10.3390/s21062189
Seo J. K. et al.: A Learning – Based Method for Solving III – Posed Nonlinear Inverse Problems: A Simulation Study of Lung EIT, SIAM. Journal on Imaging Sciences 12(3), 2019. DOI: https://doi.org/10.1137/18M1222600
Szczesny A., Korzeniewska E.: Selection of the method for the earthing resistance measurement. Przegląd Elektrotechniczny 94, 2018, 178–181.
Yu H., Kim S.: SVM Tutorial: Classification, Regression, and Ranking. Handbook of Natural computing, 2012. DOI: https://doi.org/10.1007/978-3-540-92910-9_15
Zhao W. et al.: Ultrasound transmission tomography image reconstruction with a fully convolutional neural network. Phys Med Biol. 65(23), 2020, 235021, [http://doi.org/10.1088/1361-6560/abb5c3. PMID: 33245050]. DOI: https://doi.org/10.1088/1361-6560/abb5c3
Article Details
Abstract views: 335
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
