IDEA OF ELECTRICAL TOMOGRAPHY SYSTEM FOR MONITORING LUNG VENTILATION
Abstract
In many applications of electrical tomography, such as monitoring the lungs of unconscious intensive care patients, data acquisition on the entire boundary of the body is impractical. The boundary area available for electrical tomography measurements is restricted. Physiological processes that produce changes in the electrical conductivity of the body can be monitored by hybrid algorithms. This paper presents the architecture of the system based on electrical tomography.
Keywords
inverse problem; finite element method; electrical impedance tomography
References
Adler A., Lionheart W.R.B.: Uses and abuses of EIDORS: an extensible software base for EIT, Physiological Measurement, Vol. 27, 2006.
Alberto-P. Calder´on, On an inverse boundary value problem, (Rio de Janeiro, 1980), Soc. Brasil. Mat., Rio de Janeiro, 1980, 65–73
Hamilton S.J., Siltanen S.: Nonlinear Inversion from Partial EIT Data: Computational Experiments, Contemporary Mathematics, Vol. 615, 2014, 105–129.
Holder D.S.: Electrical Impedance Tomography: Methods, History and Applications Series in Medical Physics and Biomedical Engineering, London, 2005
Lechleiter A., Rieder A.: Newton regularizations for impedance tomography: convergence by local injectivity. Inverse Problems, 24(6), 2008
Mueller J.L., Siltanen S.: Linear and Nonlinear Inverse Problems with Practical Applications. SIAM 2012.
Osher S., Sethian J.A.: Fronts Propagating with Curvature Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations, Journal of Computational Physics, 79, 1988, 12–49.
Osher S., Fedkiw R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York 2003.
Osher S., Santosa F.: Level set methods for optimization problems involving geometry and constraints. Frequencies of a two-density inhomogeneous drum. Journal of Computational Physics, 171, 2001, 272–288.
Rymarczyk T.: New Methods to Determine Moisture Areas by Electrical Impedance Tomography, International Journal of Applied Electromagnetics and Mechanics 08/2016, 1–9 [DOI:10.3233/JAE-16207].
Rymarczyk T., Filipowicz S.F.: The Shape Reconstruction of Unknown Objects for Inverse Problems, Electrical Review, NR 5/2012/3a.
Rymarczyk T.: Characterization of the shape of unknown objects by inverse numerical methods, Przegląd Elektrotechniczny, R. 88 NR 7b/2012, 138–140.
Rymarczyk T, Adamkiewicz P., Duda K., Szumowski J., Sikora J.: New Electrical Tomographic Method to Determine Dampness in Historical Buildings, Achieve of Electrical Engineering, v.65, 2/2016, 273–283.
Sankowski D., Sikora J.: Electrical capacitance tomography: Theoretical basis and applications, Wydawnictwo IEL, Warszawa 2010.
Sethian J.A., Level Set Methods and Fast Marching Methods, Cambridge University Press, 1999.
Sikora J., Wójtowicz S.: Industrial and Biological Tomography: Theoretical Basis and Applications, Wydawnictwo IEL, Warszawa 2010.
Tai C., Chung E., Chan T.: Electrical impedance tomography using level set representation and total variational regularization. Journal of Computational Physics, vol. 205, no. 1, 2005, 357–372.
Wang M.: Industrial Tomography: Systems and Applications, Elsevier, 2015.
Netrix S.A., Research and Development Center Poland
Netrix S.A., Research and Development Center Poland
Netrix S.A., Research and Development Center Poland

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.