THE CHANCES OF PRECISION ENHANCE FOR ULTRASONIC IMAGING

Tomasz Rymarczyk

tomasz@rymarczyk.com
1Research and Development Center, Netrix S.A., Lublin, 2University of Economics and Innovation in Lublin (Poland)

Jan Sikora


Research and Development Center, Netrix S.A., Lublin (Poland)

Przemysław Adamkiewicz


Research and Development Center, Netrix S.A., Lublin (Poland)

Piotr Bożek


Research and Development Center, Netrix S.A., Lublin (Poland)

Michał Gołąbek


Research and Development Center, Netrix S.A., Lublin (Poland)

Abstract

The results of ultrasonic imaging with the aid of an algorithm with the virtual rays is presented in this paper. The signal associated with the virtual rays is calculated as an arithmetical mean value of the signals of the rays surrounding the virtual one. Developed algorithm was tested on synthetic free noise data then polluted synthetic data in order to move for the real measurements. Conclusions about the imaging with new algorithm are not obvious. In same cases the significant improvement was achieved but in some not.


Keywords:

ultrasound tomography, inverse problems, singular value decomposition

Bartušek K., Fiala P., Mikulka J.: Numerical Modeling of Magnetic Field Deformation as Related to Susceptibility Measured with an MR System. Radioengineering 17(2)/2008, 113–118.
  Google Scholar

Bartušek K., Drexler P., Fiala P. et al.: Magnetoinductive Lens for Experimental Mid-field MR Tomograph. Progress in Electromagnetics Research Symposium Location: Cambridge 2010, 1047–1050.
  Google Scholar

Dušek J., Hladký D., Mikulka J.: Electrical Impedance Tomography Methods and Algorithms Processed with a GPU. PIERS Proceedings (Spring) 2017, 1710–1714.
  Google Scholar

Gorodinitsky I.F., George J.S., Rao B.D.: Neuromagnetic source imaging with FOCUSS: a recursive weighted minimum norm algorithm. Clinical Neurophysiology 95/1995, 231–251.
  Google Scholar

Göcke L: PiCUS Sonic Tomograph Software Manual, Argus Electronic Gmbh, Erich-Schlesinger-Straße 49d, 18059 Rostock, Germany, 2017, www.argus-electronic.de.
  Google Scholar

Kak A.C., Slaney M.: Principles of Computerized Tomographic Imaging. IEEE Press, New York 1999.
  Google Scholar

Kłosowski G., Rymarczyk T.: Using Neural Networks and Deep Learning Algorithms in Elecrical Impedance Tomography. Informatyka, Automatyka Pomiary w Gospodarce i Ochronie Środowiska (IAPGOŚ) 3/2017, 99–102.
  Google Scholar

Koulountzios P., Rymarczyk T., Soleimani M.: Ultrasonic Tomography for automated material inspection in liquid masses. 9th World Congress on Industrial Process Tomography, Bath, Great Britain, 2–6 September 2018.
  Google Scholar

Lawson Ch.L., Hanson R.J.: Solving Least Squares Problems. Classics in Applied Mathematics 15/1998.
  Google Scholar

Łopato P.: Detekcja i identyfikacja defektów struktur dielektrycznych i kompozytowych z wykorzystaniem fal elektromagnetycznych w zakresie terahercowym. Wydawnictwo Uczelniane Zachodniopomorskiego Uniwersytetu Technologicznego w Szczecinie, Szczecin 2018.
  Google Scholar

Marcon P. et al.: Magnetic susceptibility measurement using 2D magnetic resonance imaging. Measurement Science and Technology, 2011, 22.10: 105702.
  Google Scholar

Mikulka J.: GPU–Accelerated Reconstruction of T2 Maps in Magnetic Resonance Imaging. Measurement Science Review 4/2015, 210–218.
  Google Scholar

Yang M., Schlaberg H.I., Hoyle B.S., Beck M.S., Lenn C.: Real-Time Ultrasound Process Tomography for Two-Phase Flow Imaging Using a Reduced Number of Transducers. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 46(3)/1999.
  Google Scholar

Polakowski K., Filipowicz S.F., Sikora J., Rymarczyk T.: Quality of imaging in multipath tomography. Przeglad Elektrotechniczny 85(12)/2009, 134–136.
  Google Scholar

Rymarczyk T., Sikora J., Waleska B.: Coupled Boundary Element Method and Level Set Function for Solving Inverse Problem in EIT. 7th World Congress on Industrial Process Tomography WCIPT7 2013, 312–319.
  Google Scholar

Rymarczyk T., Sikora J., Polakowski K., Adamkiewicz P.: Efektywny algorytm obrazowania w tomografii ultradźwiękowej i radiowej dla zagadnień dwuwymiarowych. Przegląd Elektrotechniczny 94(6)/2018.
  Google Scholar

Rymarczyk T. et al.: Sposób i układ do prowadzenia pomiarów w elektrycznej tomografii pojemnościowej. Zgłoszenie patentowe P.418304 z dnia 12.08.2016.
  Google Scholar

Smolik W.: Forward Problem Solver for Image Reconstruction by Nonlinear Optimization in Electrical Capacitance Tomography. Flow Measurement and Instrumentation 21/2010, 70–77.
  Google Scholar

Soleimani M., Mitchell C.N., Banasiak R., Wajman R., Adler A.: Four-dimensional electrical capacitance tomography imaging using experimental data. Progress in Electromagnetics Research 90/2009, 171–186.
  Google Scholar

http://www.mathworks.com/products/matlab/ (June 2018).
  Google Scholar

Download


Published
2018-09-25

Cited by

Rymarczyk, T., Sikora, J., Adamkiewicz, P., Bożek, P., & Gołąbek, M. (2018). THE CHANCES OF PRECISION ENHANCE FOR ULTRASONIC IMAGING. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 8(3), 19–24. https://doi.org/10.5604/01.3001.0012.5277

Authors

Tomasz Rymarczyk 
tomasz@rymarczyk.com
1Research and Development Center, Netrix S.A., Lublin, 2University of Economics and Innovation in Lublin Poland

Authors

Jan Sikora 

Research and Development Center, Netrix S.A., Lublin Poland

Authors

Przemysław Adamkiewicz 

Research and Development Center, Netrix S.A., Lublin Poland

Authors

Piotr Bożek 

Research and Development Center, Netrix S.A., Lublin Poland

Authors

Michał Gołąbek 

Research and Development Center, Netrix S.A., Lublin Poland

Statistics

Abstract views: 227
PDF downloads: 139


Most read articles by the same author(s)

1 2 3 4 > >>