POMIAR TEMPERATURY POWIERZCHNI KORZENIA PODCZAS OBTURACJI KANAŁÓW KORZENIOWYCH

Les Hotra


Lviv Polytechnic National University, Department of Electronic Engineering (Ukraina)
https://orcid.org/0009-0005-1351-1883

Oksana Boyko

oxana_bojko@ukr.net
Danylo Halytsky Lviv National Medical University, Department of Medical Informatics (Ukraina)
https://orcid.org/0000-0002-8810-8969

Igor Helzhynskyy


Lviv Polytechnic National University, Department of Electronic Engineering (Ukraina)
https://orcid.org/0000-0002-1931-6991

Hryhorii Barylo


Lviv Polytechnic National University, Department of Electronic Engineering (Ukraina)

Pylyp Skoropad


Lviv Polytechnic National University, Department of Measuring Information Technology (Ukraina)
https://orcid.org/0000-0003-3559-6580

Alla Ivanyshyn


Lviv Polytechnic National University, Department of Measuring Information Technology (Ukraina)
https://orcid.org/0000-0002-3302-7889

Olena Basalkevych


Danylo Halytsky Lviv National Medical University, Department of Medical Informatics (Ukraina)

Abstrakt

Długotrwała ekspozycja na podwyższone temperatury przekraczające 47°C, które mogą wystąpić podczas wypełniania kanałów korzeniowych, może spowodować uszkodzenie zarówno tkanek zęba, jak i kości. W celu zbadania rozkładu temperatury na powierzchni korzenia zęba zaproponowano urządzenie do pomiaru temperatury z kompensacją zimnego złącza. Do pomiaru in vitro rozkładu temperatury na powierzchni zęba wykorzystano 8 termopar umieszczonych w bezpośrednim kontakcie z cementem zęba. W celu wyeliminowania wahania temperatury zimnego złącza zastosowano urządzenie do wyrównania temperatur oraz czujnik rezystancyjny RTD. Proponowana aproksymacja liniowa funkcji przetwarzania termopary zapewnia względny błąd nieliniowości mniejszy niż 0,05% dla termopar typu K i 0,07% dla termopar typu J w zakresie temperatur od 20 do 60°C.


Słowa kluczowe:

pomiar temperatury, termopary, obturacja kanałów korzeniowych, linearyzacja

Anandanatarajan R., Mangalanathan U., Gandhi U.: Deep Neural Network-Based Linearization and Cold Junction Compensation of Thermocouple. IEEE Transactions on Instrumentation and Measurement 72, 2022, 1–9.
  Google Scholar

Balagopal S. et al.: Evaluation of remaining dentin thickness around the prepared root canals and its influence on the temperature changes on the external root surfaces during different heated gutta-percha obturation techniques. Indian Journal of Dental Research 31(6), 2020, 857–861.
  Google Scholar

Bhandi S. et al.: Complete obturation–cold lateral condensation vs. thermoplastic techniques: a systematic review of micro-CT studies. Materials 14(14), 2021, 4013.
  Google Scholar

Boyko O., Hotra O.: Improvement of dynamic characteristics of thermoresistive transducers with controlled heating, Przegląd elektrotechniczny 2019(5), 2019, 110–113.
  Google Scholar

Diegritz C., Gerlitzki O., Fotiadou C., Folwaczny M.: Temperature changes on the root surface during application of warm vertical compaction using three different obturation units. Odontology 108, 2020, 358–365.
  Google Scholar

Donnermeyer D., Schäfer E., Bürklein S.: Real-time intracanal temperature measurement during different obturation techniques. Journal of endodontics 44(12), 2018, 1832–1836.
  Google Scholar

Epley S. R., Fleischman J., Hartwell G., Cicalese C.: Completeness of Root Canal Obturations: Epiphany Techniques versus Gutta-Percha Techniques. J. Endod. 32, 2006, 541–544.
  Google Scholar

García-Cuerva M. et al.: Root surface temperature variation during mechanical removal of root canal filling material. An in vitro study. Acta odontologica latinoamericana – AOL 30(1), 2017.
  Google Scholar

Hotra O.: Microprocessor temperature meter for dentistry investigation. Przegląd Elektrotechniczny 86 (7), 2010, 63–65.
  Google Scholar

Hotra O.: Transistor-based temperature measuring device. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska – IAPGOS 10(2), 2020, 4–7.
  Google Scholar

Hotra O., Boyko O., Zyska T.: Improvement of the operation rate of medical temperature measuring devices. Proc. SPIE 92914, 2014, 92910A-92910A–6.
  Google Scholar

Hotra O., Boyko O.: Analogue linearization of transfer function of resistive temperature transducers. Proc. SPIE 9662, 2015, 966247-966247–8.
  Google Scholar

Hotra O., Boyko O.: Compensation bridge circuit with temperature-dependent voltage divider. Przeglad elektrotechniczny 4a, 2012, 169–171.
  Google Scholar

Izhar U., Piyathilaka L., Preethichandra D. M. G.: Sensors for brain temperature measurement and monitoring–a review. Neuroscience Informatics 2(4), 2022, 100106.
  Google Scholar

Lee F. S., Van-Cura J. E., Begole E. A.: A comparison of root surface temperatures using different obturation heat sources. Journal of Endodentistry 24, 1998, 617–620.
  Google Scholar

Maseko M. L., Agee J. T., Davidson I.: Thermocouple signal conditioning using augmented device tables and table look-up neural networks, with validation in J-Thermocouples. IEEE 30th Southern African Universities Power Engineering Conference – SAUPEC, 2022, 1–4.
  Google Scholar

Mena-Álvarez J. et al.: Comparative Analysis of Temperature Variation with Three Continuous Wave Obturation Systems in Endodontics: An In Vitro Study. Applied Sciences 12(12), 2022, 6229.
  Google Scholar

Mukherjee A. et al.: An analog signal conditioning circuit for thermocouple temperature sensor employing thermistor for cold junction compensation. International conference on control, automation, robotics and embedded systems (care) 2013, 1–5.
  Google Scholar

Radeva E. et al.: Evaluation of the apical seal after post space preparation: in vitro study. Journal of IMAB–Annual Proceeding Scientific Papers 25(1), 2019, 2327–2331.
  Google Scholar

Radeva E. et al.: Temperature changes on the external root surface during post space preparation (in vitro study). Journal of IMAB–Annual Proceeding Scientific Papers 23(4), 2017, 1839–1844.
  Google Scholar

Seung M., Choi W., Hur S., Kwon I.: Cold Junction Compensation Technique of Thermocouple Thermometer Using Radiation-Hardened-by-Design Voltage Reference for Harsh Radiation Environment. IEEE Transactions on Instrumentation and Measurement 71, 2022, 1–7.
  Google Scholar

Simeone M. et al.: Temperature Profiles Along the Root with Gutta-percha Warmed through Different Heat Sources. The Open Dentistry Journal 8, 2014, 229.
  Google Scholar

Singla M., Aggarwal V., Sinha N.: External root surface temperature changes during high-temperature injectable thermoplasticized root canal obturation in simulated immature teeth. Saudi Endodontic Journal 10(1), 2020, 51–55.
  Google Scholar

Sivakumar A. A. et al.: Evaluation of temperature change in the root surface during post space preparation using two different drill systems – An invitro study. IOSR Journal of Dental and Medical Sciences 20 (10), 2021, 01–06.
  Google Scholar

Wei G., Wang X., Sun J.: Signal processing method with cold junction compensation for thermocouple. IEEE Instrumentation and Measurement Technology Conference 2009, 1458–1462.
  Google Scholar

Weller R. N. et al., A new model system for measuring intra-canal temperatures. Journal of Endodentistry 17, 1991, 491–494.
  Google Scholar


Opublikowane
2024-03-31

Cited By / Share

Hotra, L., Boyko, O., Helzhynskyy, I., Barylo, H., Skoropad, P., Ivanyshyn, A., & Basalkevych, O. (2024). POMIAR TEMPERATURY POWIERZCHNI KORZENIA PODCZAS OBTURACJI KANAŁÓW KORZENIOWYCH. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 14(1), 95–98. https://doi.org/10.35784/iapgos.5895

Autorzy

Les Hotra 

Lviv Polytechnic National University, Department of Electronic Engineering Ukraina
https://orcid.org/0009-0005-1351-1883

Autorzy

Oksana Boyko 
oxana_bojko@ukr.net
Danylo Halytsky Lviv National Medical University, Department of Medical Informatics Ukraina
https://orcid.org/0000-0002-8810-8969

Autorzy

Igor Helzhynskyy 

Lviv Polytechnic National University, Department of Electronic Engineering Ukraina
https://orcid.org/0000-0002-1931-6991

Autorzy

Hryhorii Barylo 

Lviv Polytechnic National University, Department of Electronic Engineering Ukraina

Autorzy

Pylyp Skoropad 

Lviv Polytechnic National University, Department of Measuring Information Technology Ukraina
https://orcid.org/0000-0003-3559-6580

Autorzy

Alla Ivanyshyn 

Lviv Polytechnic National University, Department of Measuring Information Technology Ukraina
https://orcid.org/0000-0002-3302-7889

Autorzy

Olena Basalkevych 

Danylo Halytsky Lviv National Medical University, Department of Medical Informatics Ukraina

Statystyki

Abstract views: 57
PDF downloads: 50


Licencja

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe.