AN OVERVIEW OF CLASSIFICATION METHODS FROM DERMOSCOPY IMAGES IN SKIN LESION DIAGNOSTIC
Magdalena Michalska
mmagamichalska@gmail.comLublin University of Technology (Poland)
Oksana Boyko
Danylo Halytsky Lviv National Medical University, Department of Medical Informatics (Ukraine)
http://orcid.org/0000-0002-8810-8969
Abstract
The article contains a review of selected classification methods of dermatoscopic images with human skin lesions, taking into account various stages of dermatological disease. The described algorithms are widely used in the diagnosis of skin lesions, such as artificial neural networks (CNN, DCNN), random forests, SVM, kNN classifier, AdaBoost MC and their modifications. The effectiveness, specificity and accuracy of classifications based on the same data sets were also compared and analyzed.
Keywords:
dermatoscopic images, classification methods, neural networks, SVM, skin cancer, skin lesionsReferences
Abbas Q., Celebi M.E., Serrano C., Fondo´n Garcı´ I., Maa G.: Pattern classification of dermoscopy images: A perceptually uniform model. Pattern Recognition 46, 2013, 86–97.
DOI: https://doi.org/10.1016/j.patcog.2012.07.027
Google Scholar
Abedini M., Chen Q., Codella N.C.F., Garnavi R., Sun X.: Accurate and scalable system for automatic detection of malignant melanoma. Dermoscopy Image Analysis. CRC Press, Boca Raton 2015.
DOI: https://doi.org/10.1201/b19107-11
Google Scholar
Alendar F., Kittler H, Helppikangas H., Alendar T.: Clear definitions,simple terminology, no metaphoric terms. Expert Rev. Dermatol. 3, 2008, 27–29.
DOI: https://doi.org/10.1586/17469872.3.1.27
Google Scholar
Argenziano G., Fabbrocini G., Carli P., De Giorgi V., Sammarco E., Delfino M.: Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions, comparison of the ABCD rule of dermatoscopy and a new 7-point checklist based on pattern analysis. Archives of Dermatology 134, 1998, 1563–1570.
DOI: https://doi.org/10.1001/archderm.134.12.1563
Google Scholar
Argenziano G., Soyer H.P., Chimenti S., Talamini R., Corona R., Sera F.: Dermoscopy of pigmented skin lesions: results of a consensus meeting via the Internet. Journal of American Academy of Dermatology 48(5), 2003, 679–693.
Google Scholar
Barata, C., Ruela, M.: Two Systems for the detection of melanomas in dermoscopy images using texture and color features. IEEE Systems Journal 8(3), 2014, 965–979.
DOI: https://doi.org/10.1109/JSYST.2013.2271540
Google Scholar
Blum H., Ellwanger U.: Digital image analysis for diagnosis of cutaneous melanoma, development of a highly effective computer algorithm based on analysis of 837 melanocytic lesions. British Journal of Dermatology 151(5), 2004, 1029–1038.
DOI: https://doi.org/10.1111/j.1365-2133.2004.06210.x
Google Scholar
Blum H., Luedtke H., Ellwanger U., Schwabe R., Rassner G., Garbe C.: Digital image analysis for diagnosis of cutaneous melanoma, development of a highly effective computer algorithm based on analysis of 837 melanocytic lesions. Computerized Medical Imaging and Graphics 31(6), 2007, 362–373.
Google Scholar
Burroni M., Corona R., Dell’Eva G., Sera F.: Melanoma computer -aided diagnosis reliability and feasibility study. Clinical Cancer Research 10(6), 2004, 1881–1886.
DOI: https://doi.org/10.1158/1078-0432.CCR-03-0039
Google Scholar
Celebi M.E., Aslandogan Y.A., Stoecker W.V., Iyatomi H., Oka H., Chen X.: Unsupervised border detection in dermoscopy images. Skin Res Technol. 13, 2007, 1–9.
DOI: https://doi.org/10.1111/j.1600-0846.2007.00251.x
Google Scholar
Celebi M. E., Kingravi H.A., Uddin B., Iyatomi H., Aslandogan Y.A., Stoecker W.V., Moss R.H.: A methodological approach to the classification of dermoscopy images. Computerized Medical Imaging and Graphics 31(6), 2007, 362–373.
DOI: https://doi.org/10.1016/j.compmedimag.2007.01.003
Google Scholar
Celebi M.E., Kingravia H.A., Uddina B., Iyatomid H., Aslandogana Y.A., Stoeckerb W.V., Mossc R.H.: A methodological approach to the classification of dermoscopy images. Comput Med Imaging Graph. 31(6), 2007, 362–373.
DOI: https://doi.org/10.1016/j.compmedimag.2007.01.003
Google Scholar
Codella N., Cai J., Abedini M., Garnavi R., Halpern A., Smith J. R.: Deep learning, sparse coding, and SVM for melanoma recognition in dermoscopy images, Machine Learning in Medical Imaging. Springer, Munich 2015.
DOI: https://doi.org/10.1007/978-3-319-24888-2_15
Google Scholar
Ercal F., Chawla A., Stoecker W.V., Lee H.-C., Moss R.H.: Neural network diagnosis of malignant melanoma from color images. IEEE Transactions on Biomedical Engineering 41(9), 1994, 837–845.
DOI: https://doi.org/10.1109/10.312091
Google Scholar
Esteva, A.: Dermatologist-level classification of skin cancer with deep neural networks. Nat. Res. 542(7639), 2017, 115–118.
Google Scholar
Esteva A., Kuprel B., Novo R.A., Ko J., Swetter S. M., Bla H.M, Thrun S.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 2017, 115–118.
DOI: https://doi.org/10.1038/nature21056
Google Scholar
Ge Z., Demyanov S., Chakravorty R., Bowling A., Garnavi R.: Skin disease recognition using deep saliency features and multimodal learning of dermoscopy and clinical images. Springer Cham LNCS 10435, 2017, 250–258.
DOI: https://doi.org/10.1007/978-3-319-66179-7_29
Google Scholar
Green A., Martin N., McKenzie G., Pfitzner J., Quintarelli F., Thomas B. W., O'Rourke M., Knight N.: Computer image analysis of pigmented skin lesions, Melanoma research 1(4), 1991, 231–236.
DOI: https://doi.org/10.1097/00008390-199111000-00002
Google Scholar
Gutman D., Codella N., Celebi E., Helba B., Marchetti M., Mishra N., Halpern A.: Skin lesion analysis toward melanoma detection: A Challenge at the International Symposium on Biomedical Imaging (ISBI) 2016, International Skin Imaging Collaboration (ISIC). eprint arXiv:1605.01397.
Google Scholar
Husemann R., Tölg S., Seelen W.V., Altmeyer P., Frosch P.J., Stücker M., Hoffmann K., El-Gammal S.: Computerised diagnosis of skin cancer using neural networks. Skin Cancer and UV Radiation. Springer, Berlin 1997.
DOI: https://doi.org/10.1007/978-3-642-60771-4_121
Google Scholar
Kahofer P., Hofmann-Wellenhof R., Smolle J.: Tissue counter analysis of dermatoscopic images of melanocytic skin tumours: preliminary findings. Melanoma research 12(1), 2002, 71–75.
DOI: https://doi.org/10.1097/00008390-200202000-00010
Google Scholar
Kittler H., Riedl E., Rosendahl C., Cameron A.: Dermatoscopy of unpigmented lesions of the skin: A new classification of vessel morphology based on pattern analysis. Dermatopathology: Practical & Conceptual 14(4), 2018, 3.
Google Scholar
Kruk M., Świderski B., Osowski S., Kurek J., Słowińska M., Walecka I.: Melanoma recognition using extended set of descriptors and classifiers. J Image Video Proc. 43, 2015.
DOI: https://doi.org/10.1186/s13640-015-0099-9
Google Scholar
Menzies S.W., Bischof L, Talbot H, Gutenev A, Avramidis M, Wong L.: The performance of SolarScan: An automated dermoscopy image analysis instrument for the diagnosis of primary melanoma. Arch Dermatol. 141(11), 2005, 1388–1396.
DOI: https://doi.org/10.1001/archderm.141.11.1388
Google Scholar
Menzies S., Ingvar C., Crotty K., McCarthy W.: Frequency and morphologic characteristics of invasive melanomas lacking specific surface microscopic features. Archives of Dermatology 132, 1996, 1178–1182.
DOI: https://doi.org/10.1001/archderm.132.10.1178
Google Scholar
Michalska M.: Klasyfikacja zmian skórnych z obrazów dermatoskopwych, Wybrane zagadnienia z zakresu elektrotechniki, inżynierii biomedycznej i budownictwa. Prace doktorantów Politechniki Lubelskiej 2019, 108–120.
Google Scholar
Piątkowska W., Martyna J., Nowak L.: A decision support system based on the semantic analysis of melanoma images using multi-elitist PSO and SVM. Proceedings of the 7th International Conference on Machine Learning and Data Mining in Pattern Recognition MLDM’11 1, 2011, 362–374.
DOI: https://doi.org/10.1007/978-3-642-23199-5_27
Google Scholar
Romero-Lopez A., Giro-i-Nieto X., Burdick J., Marques O.: Skin lesion classification from dermoscopic images using deep learning techniques. Proc. of Biomedical Engineering 2017.
DOI: https://doi.org/10.2316/P.2017.852-053
Google Scholar
Rosendahl C., Cameron A., McColl I., Wilkinson I.: Dermatoscopy in routine practice. Chaos and Clues. Australian Family Physician 41(7), 2012.
Google Scholar
Schaefer G., Krawczyk B., Celebi M.E., Iyatomi H.: An ensemble classification approach for melanoma diagnosis, Memetic Computing 6(4), 2014, 233–240.
DOI: https://doi.org/10.1007/s12293-014-0144-8
Google Scholar
Shahid M., Khan S.: Dermoscopy images classification based on color, texture and shape features using SVM. The 3rd International Conference on Next Generation Computing (INC GC2017b), 243–245.
Google Scholar
Xie F., Fan H., Li Y., Jiang Z., Meng R., Bovik A.: Melanoma classification on dermoscopy images using a neural network ensemble model. IEEE Transationa on Medical Imaging 36(3), 2017, 849–858.
DOI: https://doi.org/10.1109/TMI.2016.2633551
Google Scholar
Yu L., Chen H., Dou,Q., Qin J., Heng P.A.: Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE Trans. Med. Imaging 36(4), 2017, 994–1004.
DOI: https://doi.org/10.1109/TMI.2016.2642839
Google Scholar
Zhang J., Xie Y., Wu Q., Xia Y.: Skin lesion classification in dermoscopy images using synergic deep learning. Springer Nature Switzerland, LNCS
Google Scholar
Authors
Oksana BoykoDanylo Halytsky Lviv National Medical University, Department of Medical Informatics Ukraine
http://orcid.org/0000-0002-8810-8969
Statistics
Abstract views: 405PDF downloads: 248
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Most read articles by the same author(s)
- Magdalena Michalska, OVERVIEW OF AOI USE IN SURFACE-MOUNT TECHNOLOGY CONTROL , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 10 No. 4 (2020)
- Gryhoriy Barylo, Oksana Boyko, Ihor Gelzynskyy, Roman Holyaka, Zenon Hotra, Tetyana Marusenkova, Mykola Khilchuk, Magdalena Michalska, HARDWARE AND SOFTWARE MEANS FOR ELECTRONIC COMPONENTS AND SENSORS RESEARCH , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 10 No. 1 (2020)
- Magdalena Michalska, OVERVIEW OF FEATURE SELECTION METHODS USED IN MALIGNANT MELANOMA DIAGNOSTICS , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 11 No. 1 (2021)
- Magdalena Michalska, OVERVIEW OF SKIN DIAGNOSTIC TECHNIQUES BASED ON MULTILAYER SKIN MODELS AND SPECTROPHOTOMETRICS , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 11 No. 3 (2021)
- Oksana Boyko, Nataliya Dorosh, Irena Yermakova, Oleh Dorosh, Żaklin Grądz, INFOCOMMUNICATION TECHNOLOGIES FOR ASSESSMENT AND PREDICTION OF ENVIRONMENT IMPACT ON HUMAN HEALTH , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 10 No. 3 (2020)
- Magdalena Michalska, OVERVIEW OF THE USE OF X-RAY EQUIPMENT IN ELECTRONICS QUALITY TESTS , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 11 No. 2 (2021)
- Volodymyr Brailovsky, Ivan Pyslar, Magharyta Rozhdestvenska, Magdalena Michalska, SPECTRAL SENSITIVITY OF HUMAN VISION TO THE LIGHT PULSES , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 8 No. 1 (2018)
- Magdalena Michalska, ANALYSES OF SKIN LESION AREAS AFTER THRESHOLDING , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 10 No. 3 (2020)
- Magdalena Michalska, SELECTED APPLICATIONS OF DEEP NEURAL NETWORKS IN SKIN LESION DIAGNOSTIC , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 11 No. 4 (2021)
- Mykola Khobzei, Dmytro Vovchuk, Magdalena Michalska, OVERVIEW OF APPLICATIONS OF WIRE MEDIUM IN RADIO ENGINEERING MEANS , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 8 No. 4 (2018)