TECHNOLOGIA I POMIARY MAGNETOOPORU W CIENKOWARSTWOWYCH STRUKTURACH FERROMAGNETYCZNYCH
Jakub Kisała
Politechnika Lubelska (Polska)
Karolina Czarnacka
Uniwersytet Przyrodniczy w Lublinie (Polska)
http://orcid.org/0000-0003-1434-734X
Mateusz Gęca
Politechnika Lubelska (Polska)
https://orcid.org/0000-0002-0519-7389
Andrzej Kociubiński
akociub@semiconductor.plPolitechnika Lubelska (Polska)
https://orcid.org/0000-0002-0377-8243
Abstrakt
W pracy przedstawiono technologię otrzymywania struktur warstwowych NiFe/Ti/NiFe w technologii MEMS metodą rozpylania magnetronowego w założeniu mających służyć jako czujniki pół magnetycznych. Wykonano serię próbek na szklanym podłożu o budowie kanapkowej, gdzie poszczególne warstwy stanowiły 100 nm NiFe,10 nm Ti oraz na wierzchu ponownie NiFe o grubości 100 nm. Przeprowadzono pomiary rezystancji stałoprądowej otrzymanych struktur w stałym polu magnetycznym, które było wytwarzane przez magnesy neodymowe oraz elektromagnes. Otrzymane wyniki potwierdzają występowanie zjawisk określanych jako efekt magnetooporowy. Sprawdzony oraz udowodniony został wpływ ułożenia przestrzennego struktur względem wektora stałego pola magnetycznego.
Słowa kluczowe:
statyczne pole magnetyczne, rozpylanie magnetronowe, MEMS, magnetoopórBibliografia
Chen L., Zhou Y., Lei C., Zhou Z. M., Ding W.: Giant magnetoimpedance effect in sputtered single layered NiFe film and meander NiFe/Cu/NiFe film. Journal of Magnetism and Magnetic Materials 322(19)/2010, 2834–2839, [http://doi.org/10.1016/j.jmmm.2010.04.038].
DOI: https://doi.org/10.1016/j.jmmm.2010.04.038
Google Scholar
Chen L., Zhou Y., Lei C., Zhou Z. M.: Effect of sputtering parameters and sample size on giant magnetoimpedance effect in NiFe and NiFe/Cu/NiFe films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology 172(2)/2010, 101–107, [http://doi.org/10.1016/j.mseb.2010.04.026].
DOI: https://doi.org/10.1016/j.mseb.2010.04.026
Google Scholar
Dixit G., Singh J. P., Srivastava R. C., Agrawal H. M., Choudhary R. J., Ajay G.: Structural and magnetic behaviour of NiFe2O4 thin film grown by pulsed laser deposition. Indian Journal of Pure & Applied Physics 48(4)/2010, 287–291.
Google Scholar
Djamal M., Ramli: Development of sensors based on giant magnetoresistance material. Procedia Engineering 32/2012, 60–68, [http://doi.org/10.1016/j.proeng.2012.01.1237].
DOI: https://doi.org/10.1016/j.proeng.2012.01.1237
Google Scholar
Ennen I., Kappe D., Rempel T., Glenske C., Hütten A.: Giant Magnetoresistance: Basic concepts, microstructure, magnetic interactions and applications. Sensors 16/2016, [http://doi.org/10.3390/s16060904].
DOI: https://doi.org/10.3390/s16060904
Google Scholar
Esmaili S., Bahrololoom M. E., Zamani C.: Electrodeposition of NiFe/Cu multilayers from a single bath. Surface Engineering and Applied Electrochemistry 47(2)/2011, 107–111, [http://doi.org/10.3103/S1068375511020049].
DOI: https://doi.org/10.3103/S1068375511020049
Google Scholar
Fernandez G. V., Grundy P. J., Vopson M. M.: Control and Analysis of Grain Size in Sputtered NiFe Thin Films. Journal of Condensed Matter Physics 1(1)/2013, 6–9.
DOI: https://doi.org/10.12966/jcmp.08.02.2013
Google Scholar
García-Arribas A., Fernández E., Svalov A., Kurlyandskaya G. V., Barandiaran J. M.: Thin-film magneto-impedance structures with very large sensitivity. Journal of Magnetism and Magnetic Materials 400/2016, 321–326, [http://doi.org/10.1016/j.jmmm.2015.07.107].
DOI: https://doi.org/10.1016/j.jmmm.2015.07.107
Google Scholar
Gijs M. A. M.: Magnetic bead handling on-chip: New opportunities for analytical applications. Microfluidics and Nanofluidics 1/2004, 22–40, [http://doi.org/10.1007/s10404-004-0010-y].
DOI: https://doi.org/10.1007/s10404-004-0010-y
Google Scholar
Gupta N., Verma A., Kashyap S. C., Dube D. C.: Dielectric behavior of spin-deposited nanocrystalline nickel-zinc ferrite thin films processed by citrate-route. Solid State Communications 134(10)/2005, 689–694, [http://doi.org/10.1016/j.ssc.2005.02.037].
DOI: https://doi.org/10.1016/j.ssc.2005.02.037
Google Scholar
Hall D. A., Gaster R. S., Lin T., Osterfeld S. J., Han S., Murmann B., Wang S. X.: GMR biosensor arrays: A system perspective. Biosensors and Bioelectronics 25(9)/2010, 2051–2057, [http://doi.org/10.1016/j.bios.2010.01.038].
DOI: https://doi.org/10.1016/j.bios.2010.01.038
Google Scholar
Jogschies L., Klaas D., Kruppe R., Rittinger J., Taptimthong P., Wienecke A., Wurz M. C.: Recent developments of magnetoresistive sensors for industrial applications. Sensors 15/2015, 28665–28689, [http://doi.org/10.3390/s151128665].
DOI: https://doi.org/10.3390/s151128665
Google Scholar
Kurlyandskaya G. V., Fernández E., Svalov A., Burgoa Beitia A., García-Arribas A., Larranaga A.: Flexible thin film magnetoimpedance sensors. Journal of Magnetism and Magnetic Materials 415/2016, 91–96, [http://doi.org/10.1016/j.jmmm.2016.02.004].
DOI: https://doi.org/10.1016/j.jmmm.2016.02.004
Google Scholar
Kuru H., Kockar H., Alper M.: Giant magnetoresistance (GMR) behavior of electrodeposited NiFe/Cu multilayers: Dependence of non-magnetic and magnetic layer thicknesses. Journal of Magnetism and Magnetic Materials 444/2017, 132–139, [http://doi.org/10.1016/j.jmmm.2017.08.019].
DOI: https://doi.org/10.1016/j.jmmm.2017.08.019
Google Scholar
Lai C. H., Matsuyama H., White R. L., Anthony T. C., Matsuyama H.: Anisotropic Exchange for NiFe Films Grown on Epitaxial NiO. IEEE Transactions on Magnetics 31(6)/1995, 2609–2611, [http://doi.org/10.1109/20.490068].
DOI: https://doi.org/10.1109/20.490068
Google Scholar
Makhnovskiy D. P., Panina L. V., Fry N., Mapps D. J.: Magneto-impedance in NiFe/Au/NiFe sandwich films with different types of anisotropy. Journal of Magnetism and Magnetic Materials 272–276(III)/2004, 1866–1867, [http://doi.org/10.1016/j.jmmm.2003.12.833].
DOI: https://doi.org/10.1016/j.jmmm.2003.12.833
Google Scholar
Motomura Y., Tatsumi T., Urai H., Aoyama M.: Soft Magnetic Properties and Heat Stability for Fe/NiFe Superlattices. IEEE Transactions on Magnetics 26(5)/1990, 2327–2331, [http://doi.org/10.1109/20.104714].
DOI: https://doi.org/10.1109/20.104714
Google Scholar
Phani A. R., Santucci S.: Structural characterization of nickel titanium oxide synthesized by sol-gel spin coating technique. Thin Solid Films 396/2001, 1–4, [http://doi.org/10.1016/S0040-6090(01)01131-2].
DOI: https://doi.org/10.1016/S0040-6090(01)01131-2
Google Scholar
Reig C., Cubells-Beltrán M.-D., Ramírez Munoz D.: Magnetic Field Sensors Based on Giant Magnetoresistance (GMR) Technology: Applications in Electrical Current Sensing. Sensors 9(10)/2009, 7919–7942, [http://doi.org/10.3390/s91007919].
DOI: https://doi.org/10.3390/s91007919
Google Scholar
Svalov A. V., Larranaga A., Kurlyandskaya G. V.: Effect of Ti seed and spacer layers on structure and magnetic properties of FeNi thin films and FeNi-based multilayers. Materials Science and Engineering B: Solid-State Materials for Advanced Technology 188/2014, 102–105, [http://doi.org/10.1016/j.mseb.2014.06.006].
DOI: https://doi.org/10.1016/j.mseb.2014.06.006
Google Scholar
Zhao C. J., Wu Z. L., Zhao Z. D., Ding L., Lu X. A., Li X. J., Yu G. H.: Influence on the transport behaviors of spin-polarized electrons exerted by MgO/NiFe and NiFe/MgO heterointerfaces. Journal of Magnetism and Magnetic Materials 368/2014, 59–63, [http://doi.org/10.1016/j.jmmm.2014.05.013].
DOI: https://doi.org/10.1016/j.jmmm.2014.05.013
Google Scholar
Zhao Z. D., Li M. H., Zhao C. J., Yang G., Zhang J. Y., Jiang S. L., Yu G. H.: Large enhancement of magnetoresistance in NiFe film with MgO layers sandwiched after annealing. Applied Surface Science 321/2014, 554–559, [http://doi.org/10.1016/j.apsusc.2014.10.047].
DOI: https://doi.org/10.1016/j.apsusc.2014.10.047
Google Scholar
Autorzy
Jakub KisałaPolitechnika Lubelska Polska
Autorzy
Karolina CzarnackaUniwersytet Przyrodniczy w Lublinie Polska
http://orcid.org/0000-0003-1434-734X
Autorzy
Andrzej Kociubińskiakociub@semiconductor.pl
Politechnika Lubelska Polska
https://orcid.org/0000-0002-0377-8243
Statystyki
Abstract views: 481PDF downloads: 288
Licencja
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Na tych samych warunkach 4.0 Miedzynarodowe.
Inne teksty tego samego autora
- Andrzej Kociubiński, Dawid Zarzeczny, Maciej Szypulski, Aleksandra Wilczyńska, Dominika Pigoń, Teresa Małecka-Massalska, Monika Prendecka, MONITOROWANIE HODOWLI KOMÓRKOWYCH W CZASIE RZECZYWISTYM PRZY ZASTOSOWANIU NIKLOWYCH KONDENSATORÓW GRZEBIENIOWYCH , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Tom 10 Nr 2 (2020)
- Aleksandra Wilczyńska, Karolina Czarnacka, Andrzej Kociubiński, Tomasz Kołtunowicz, OPRACOWANIE TECHNOLOGII OSADZANIA I POMIARÓW ZMIĘNNOPRĄDOWYCH ULTRACIENKICH WARSTW MIEDZI , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Tom 12 Nr 1 (2022)
- Jakub Kisała, Andrzej Kociubiński, Karolina Czarnacka, Mateusz Gęca, ZJAWISKO GIGANTYCZNEGO MAGNETOOPORU OBSERWOWANE W CIENKICH STRUKTURACH NiFe/Cu/NiFe , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Tom 12 Nr 3 (2022)