GIANT MAGNETORESISTANCE OBSERVED IN THIN FILM NiFe/Cu/NiFe STRUCTURES
Jakub Kisała
j.kisala@pollub.plLublin University of Technology, Doctoral School (Poland)
http://orcid.org/0000-0002-4898-3670
Andrzej Kociubiński
Lublin University of Technology (Poland)
http://orcid.org/0000-0002-0377-8243
Karolina Czarnacka
University of Life Sciences in Lublin (Poland)
http://orcid.org/0000-0003-1434-734X
Mateusz Gęca
Lublin University of Technology (Poland)
http://orcid.org/0000-0002-0519-7389
Abstract
In this paper, the technology for fabricating NiFe/Cu/NiFe layered structures by magnetron sputtering is presented. Two series of samples were fabricated on a glass substrate with a layered structure, where the individual layers were 30 nm NiFe, 5 nm Cu, and finally NiFe with a thickness of 30 nm. The series differed in the type of technology mask used. A constant magnetic field was applied to the substrate during the sputtering of the ferromagnetic layers. Measurements of the DC resistance of the obtained structures in the constant magnetic field of neodymium magnet packs with a constant magnetic field of about 0.5 T magnetic induction have been carried out. Comparison of the two series allows us to conclude the greater validity of using masks in the form of Kapton tape. The obtained results seem to confirm the occurrence of phenomena referred to as the giant magnetoresistance effect.
Keywords:
magnetoresistance, sputtering, thin films, static magnetic fieldReferences
Bakonyi I., Péter L.: Electrodeposited multilayer films with giant magnetoresistance (GMR): Progress and problems. Progress in Materials Science 55, 2010, 107–245.
DOI: https://doi.org/10.1016/j.pmatsci.2009.07.001
Google Scholar
Baraduc C., Chshiev M., Dieny B.: Spintronic Phenomena: Giant Magnetoresistance, Tunnel Magnetoresistance and Spin Transfer Torque, Smart Sensors. Measurement and Instrumentation 6, 2013, 1–30.
DOI: https://doi.org/10.1007/978-3-642-37172-1_1
Google Scholar
Barnaś J.: Spin w elektronice. Materiały XXXVI Zjazdu Fizyków Polskich, Toruń, 2001, 78–84.
Google Scholar
Czarnacka K., Kisała J., Kociubiński A., Gęca M.: Technology and measurements of three-layer NiFeCuMo/Ti/NiFeCuMo structures exhibiting the giant magnetoresistance phenomenon. Journal of Vacuum Science & Technology B 40, 2022, 012806.
DOI: https://doi.org/10.1116/6.0001488
Google Scholar
Diao Z. et al.: Half-metal CPP GMR sensor for magnetic recording. Journal of Magnetism and Magnetic Materials 356, 2014, 73–81.
DOI: https://doi.org/10.1016/j.jmmm.2013.12.050
Google Scholar
Dixit G. et al.: Structural and magnetic behaviour of NiFe2O4 thin film grown by pulsed laser deposition. Indian Journal of Pure & Applied Physics (IJPAP) 48(4), 2010, 287–291.
Google Scholar
Fermon C.: Micro- and Nanofabrication Techniques. Spin Electronics, Lecture Notes in Physics 569/2000, 379–395.
DOI: https://doi.org/10.1007/3-540-45258-3_16
Google Scholar
Ennen I., Kappe D., Rempel T., Glenske C., Hütten A.: Giant Magnetoresistance: Basic concepts, microstructure, magnetic interactions and applications. Sensors 16, 2016, s16060904.
DOI: https://doi.org/10.3390/s16060904
Google Scholar
Inoue J.: GMR, TMR and BMR. Nanomagnetism and Spintronics 2009, 15–92.
DOI: https://doi.org/10.1016/B978-0-444-53114-8.00002-9
Google Scholar
Johnson A.: Spin Valve Systems for Angle Sensor Applications. Technische Universität Darmstadt, 2004.
Google Scholar
Kisała J.: Wpływ dodatkowego pola magnetycznego podczas napylania magnetronowego na efekt GMR w strukturach cienkowarstwowych. Przegląd Elektrotechniczny 1, 2022, 194–197.
DOI: https://doi.org/10.15199/48.2022.01.42
Google Scholar
Kurenkov A. S., Babaytsev G. V., Chechenin, N. G.: An origin of asymmetry of giant magnetoresistance loops in spin valves. Journal of Magnetism and Magnetic Materials 470, 2019, 147–150.
DOI: https://doi.org/10.1016/j.jmmm.2017.10.036
Google Scholar
Kuru H., Kockar H., Alper M.: Giant magnetoresistance (GMR) behavior of electrodeposited NiFe/Cu multilayers: Dependence of non-magnetic and magnetic layer thicknesses. Journal of Magnetism and Magnetic Materials 444, 2017, 132–139.
DOI: https://doi.org/10.1016/j.jmmm.2017.08.019
Google Scholar
Leitao D. C., Amaral J. P., Cardoso S., Reig C.: Microfabrication Techniques, Smart Sensors. Measurement and Instrumentation 6, 2013, 31–46.
DOI: https://doi.org/10.1007/978-3-642-37172-1_2
Google Scholar
Motomura Y., Tatsumi T., Urai H., Aoyama M.: Soft Magnetic Properties and Heat Stability for Fe/NiFe Superlattices. IEEE Transactions on Magnetics, 26(5), 1990, 2327–2331.
DOI: https://doi.org/10.1109/20.104714
Google Scholar
Stobiecki T.: Urządzenia elektroniki spinowej. Wydawnictwo AGH, Kraków 2012.
Google Scholar
Szewczyk A., Wiśniewski A., Puźniak R., Szymczak H.: Magnetyzm i nadprzewodnictwo. PWN, Warszawa 2012.
Google Scholar
Reig C., Cubells-Beltrán, M. D., Muñoz, D. R.: Magnetic field sensors based on Giant Magnetoresistance (GMR) technology: Applications in electrical current sensing. Sensors 9/2009, 7919–7942.
DOI: https://doi.org/10.3390/s91007919
Google Scholar
Thomson W.: On the Electro-Dynamic Qualities of Metals:—Effects of Magnetization on the Electric Conductivity of Nickel and of Iron. Proceedings of the Royal Society 8, 1857, 546–550.
DOI: https://doi.org/10.1098/rspl.1856.0144
Google Scholar
Tsymbal E. T., Pettifor D. G.: Perspectives of Giant Magnetoresistance. Solid State Physics 56/2001, 113–237.
DOI: https://doi.org/10.1016/S0081-1947(01)80019-9
Google Scholar
Waite M. M., Chester W., Glocker D.: Sputtering Sources. Society of Vacuum Coaters 2010, 42–50.
Google Scholar
Wu Y. P., Han G. C., Kong L. B.: Microstructure and microwave permeability of FeCo thin films with Co underlayer. Journal of Magnetism and Magnetic Materials 322, 2010, 3223–3226.
DOI: https://doi.org/10.1016/j.jmmm.2010.06.032
Google Scholar
Authors
Jakub Kisałaj.kisala@pollub.pl
Lublin University of Technology, Doctoral School Poland
http://orcid.org/0000-0002-4898-3670
Authors
Andrzej KociubińskiLublin University of Technology Poland
http://orcid.org/0000-0002-0377-8243
Authors
Karolina CzarnackaUniversity of Life Sciences in Lublin Poland
http://orcid.org/0000-0003-1434-734X
Statistics
Abstract views: 253PDF downloads: 171
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Most read articles by the same author(s)
- Andrzej Kociubiński, Dawid Zarzeczny, Maciej Szypulski, Aleksandra Wilczyńska, Dominika Pigoń, Teresa Małecka-Massalska, Monika Prendecka, REAL-TIME MONITORING OF CELL CULTURES WITH NICKEL COMB CAPACITORS , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 10 No. 2 (2020)
- Jakub Kisała, Karolina Czarnacka, Mateusz Gęca, Andrzej Kociubiński, TECHNOLOGY AND MEASUREMENTS OF MAGNETORESISTANCE IN THIN-LAYERED FERROMAGNETIC STRUCTURES , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 10 No. 1 (2020)
- Aleksandra Wilczyńska, Karolina Czarnacka, Andrzej Kociubiński, Tomasz Kołtunowicz, Development of deposition technology and AC measurement of copper ultrathin layers , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 12 No. 1 (2022)