GIANT MAGNETORESISTANCE OBSERVED IN THIN FILM NiFe/Cu/NiFe STRUCTURES

Jakub Kisała

j.kisala@pollub.pl
Lublin University of Technology, Doctoral School (Poland)
http://orcid.org/0000-0002-4898-3670

Andrzej Kociubiński


Lublin University of Technology (Poland)
http://orcid.org/0000-0002-0377-8243

Karolina Czarnacka


University of Life Sciences in Lublin (Poland)
http://orcid.org/0000-0003-1434-734X

Mateusz Gęca


Lublin University of Technology (Poland)
http://orcid.org/0000-0002-0519-7389

Abstract

In this paper, the technology for fabricating NiFe/Cu/NiFe layered structures by magnetron sputtering is presented. Two series of samples were fabricated on a glass substrate with a layered structure, where the individual layers were 30 nm NiFe, 5 nm Cu, and finally NiFe with a thickness of 30 nm. The series differed in the type of technology mask used. A constant magnetic field was applied to the substrate during the sputtering of the ferromagnetic layers. Measurements of the DC resistance of the obtained structures in the constant magnetic field of neodymium magnet packs with a constant magnetic field of about 0.5 T magnetic induction have been carried out. Comparison of the two series allows us to conclude the greater validity of using masks in the form of Kapton tape. The obtained results seem to confirm the occurrence of phenomena referred to as the giant magnetoresistance effect.


Keywords:

magnetoresistance, sputtering, thin films, static magnetic field

Bakonyi I., Péter L.: Electrodeposited multilayer films with giant magnetoresistance (GMR): Progress and problems. Progress in Materials Science 55, 2010, 107–245.
DOI: https://doi.org/10.1016/j.pmatsci.2009.07.001   Google Scholar

Baraduc C., Chshiev M., Dieny B.: Spintronic Phenomena: Giant Magnetoresistance, Tunnel Magnetoresistance and Spin Transfer Torque, Smart Sensors. Measurement and Instrumentation 6, 2013, 1–30.
DOI: https://doi.org/10.1007/978-3-642-37172-1_1   Google Scholar

Barnaś J.: Spin w elektronice. Materiały XXXVI Zjazdu Fizyków Polskich, Toruń, 2001, 78–84.
  Google Scholar

Czarnacka K., Kisała J., Kociubiński A., Gęca M.: Technology and measurements of three-layer NiFeCuMo/Ti/NiFeCuMo structures exhibiting the giant magnetoresistance phenomenon. Journal of Vacuum Science & Technology B 40, 2022, 012806.
DOI: https://doi.org/10.1116/6.0001488   Google Scholar

Diao Z. et al.: Half-metal CPP GMR sensor for magnetic recording. Journal of Magnetism and Magnetic Materials 356, 2014, 73–81.
DOI: https://doi.org/10.1016/j.jmmm.2013.12.050   Google Scholar

Dixit G. et al.: Structural and magnetic behaviour of NiFe2O4 thin film grown by pulsed laser deposition. Indian Journal of Pure & Applied Physics (IJPAP) 48(4), 2010, 287–291.
  Google Scholar

Fermon C.: Micro- and Nanofabrication Techniques. Spin Electronics, Lecture Notes in Physics 569/2000, 379–395.
DOI: https://doi.org/10.1007/3-540-45258-3_16   Google Scholar

Ennen I., Kappe D., Rempel T., Glenske C., Hütten A.: Giant Magnetoresistance: Basic concepts, microstructure, magnetic interactions and applications. Sensors 16, 2016, s16060904.
DOI: https://doi.org/10.3390/s16060904   Google Scholar

Inoue J.: GMR, TMR and BMR. Nanomagnetism and Spintronics 2009, 15–92.
DOI: https://doi.org/10.1016/B978-0-444-53114-8.00002-9   Google Scholar

Johnson A.: Spin Valve Systems for Angle Sensor Applications. Technische Universität Darmstadt, 2004.
  Google Scholar

Kisała J.: Wpływ dodatkowego pola magnetycznego podczas napylania magnetronowego na efekt GMR w strukturach cienkowarstwowych. Przegląd Elektrotechniczny 1, 2022, 194–197.
DOI: https://doi.org/10.15199/48.2022.01.42   Google Scholar

Kurenkov A. S., Babaytsev G. V., Chechenin, N. G.: An origin of asymmetry of giant magnetoresistance loops in spin valves. Journal of Magnetism and Magnetic Materials 470, 2019, 147–150.
DOI: https://doi.org/10.1016/j.jmmm.2017.10.036   Google Scholar

Kuru H., Kockar H., Alper M.: Giant magnetoresistance (GMR) behavior of electrodeposited NiFe/Cu multilayers: Dependence of non-magnetic and magnetic layer thicknesses. Journal of Magnetism and Magnetic Materials 444, 2017, 132–139.
DOI: https://doi.org/10.1016/j.jmmm.2017.08.019   Google Scholar

Leitao D. C., Amaral J. P., Cardoso S., Reig C.: Microfabrication Techniques, Smart Sensors. Measurement and Instrumentation 6, 2013, 31–46.
DOI: https://doi.org/10.1007/978-3-642-37172-1_2   Google Scholar

Motomura Y., Tatsumi T., Urai H., Aoyama M.: Soft Magnetic Properties and Heat Stability for Fe/NiFe Superlattices. IEEE Transactions on Magnetics, 26(5), 1990, 2327–2331.
DOI: https://doi.org/10.1109/20.104714   Google Scholar

Stobiecki T.: Urządzenia elektroniki spinowej. Wydawnictwo AGH, Kraków 2012.
  Google Scholar

Szewczyk A., Wiśniewski A., Puźniak R., Szymczak H.: Magnetyzm i nadprzewodnictwo. PWN, Warszawa 2012.
  Google Scholar

Reig C., Cubells-Beltrán, M. D., Muñoz, D. R.: Magnetic field sensors based on Giant Magnetoresistance (GMR) technology: Applications in electrical current sensing. Sensors 9/2009, 7919–7942.
DOI: https://doi.org/10.3390/s91007919   Google Scholar

Thomson W.: On the Electro-Dynamic Qualities of Metals:—Effects of Magnetization on the Electric Conductivity of Nickel and of Iron. Proceedings of the Royal Society 8, 1857, 546–550.
DOI: https://doi.org/10.1098/rspl.1856.0144   Google Scholar

Tsymbal E. T., Pettifor D. G.: Perspectives of Giant Magnetoresistance. Solid State Physics 56/2001, 113–237.
DOI: https://doi.org/10.1016/S0081-1947(01)80019-9   Google Scholar

Waite M. M., Chester W., Glocker D.: Sputtering Sources. Society of Vacuum Coaters 2010, 42–50.
  Google Scholar

Wu Y. P., Han G. C., Kong L. B.: Microstructure and microwave permeability of FeCo thin films with Co underlayer. Journal of Magnetism and Magnetic Materials 322, 2010, 3223–3226.
DOI: https://doi.org/10.1016/j.jmmm.2010.06.032   Google Scholar

Download


Published
2022-09-30

Cited by

Kisała, J., Kociubiński, A., Czarnacka, K., & Gęca, M. (2022). GIANT MAGNETORESISTANCE OBSERVED IN THIN FILM NiFe/Cu/NiFe STRUCTURES. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 12(3), 12–15. https://doi.org/10.35784/iapgos.2884

Authors

Jakub Kisała 
j.kisala@pollub.pl
Lublin University of Technology, Doctoral School Poland
http://orcid.org/0000-0002-4898-3670

Authors

Andrzej Kociubiński 

Lublin University of Technology Poland
http://orcid.org/0000-0002-0377-8243

Authors

Karolina Czarnacka 

University of Life Sciences in Lublin Poland
http://orcid.org/0000-0003-1434-734X

Authors

Mateusz Gęca 

Lublin University of Technology Poland
http://orcid.org/0000-0002-0519-7389

Statistics

Abstract views: 221
PDF downloads: 141