Development of deposition technology and AC measurement of copper ultrathin layers


Abstract

In this paper, the transport properties of discontinuous 4 nm copper layers obtained by dual-source non-reactive magnetron sputtering in the presence of argon are presented. The value of resistance and capacitance of the current parallel to the plane of these layers can be adjusted independently by changing the nominal thickness of the metallization. The influence of frequency on the conductivity of the obtained structures in the range from 4 Hz to 8 MHz was studied. Additionally, in order to compare the non-oxidized and oxidized layers, some of them were heated at 500 °C. Based on the results obtained, the mechanism of electric charge transfer was determined, the knowledge of which is essential for planning further experiments based on this sputtering method and potential selection of future application of the structures. Statistical measurements at room temperature will serve as a reference for the conductivity and resistivity values obtained by mathematical calculations from measurements of resistance, capacitance, phase shift angle, and dielectric loss tangent as a function of temperature from 20 K to 375 K, which are expected in further studies on the obtained structures. The work is an introduction to the technology of obtaining multi-layer metal-dielectric structures.


Keywords

magnetron sputtering; ultrathin layers; AC measurement; conductivity measurement; charge transport; Cu films

Beck R.: Technologia krzemowa. PWN, Warszawa, 1991.

Biegański P., Dobierzewska-Mozrzymas E.: Electrical properties of discontinuous copper films. International Journal of Electronics 70, 1991, 499–504, [http://doi.org/10.1080/00207219108921300]. DOI: https://doi.org/10.1080/00207219108921300

Cemin F., Lundin D.: Low electrical resistivity in thin and ultrathin copper layers grown by high power impulse magnetron sputtering. Journal of Vacuum Science & Technology A 34(5), 2016, 051506-1–051506-7 [http://doi.org/10.1116/1.4959555]. DOI: https://doi.org/10.1116/1.4959555

Chakarvarki S. K.: Track-etch membranes enabled nano-/microtechnology: A review. Radiation Measurements 44(9–10), 2009, 1085–1092, [http://doi.org/10.1016/j.radmeas.2009.10.028]. DOI: https://doi.org/10.1016/j.radmeas.2009.10.028

Chebakova K. A., Dzidziguri E. L. et al.: Open AccessArticle X-ray Fluorescence Spectroscopy Features of Micro- and Nanoscale Copper and Nickel Particle Compositions, Nanomaterials 11(9), 2021, 2388, [http://doi.org/10.3390/nano11092388]. DOI: https://doi.org/10.3390/nano11092388

Dingle R. B.: The electrical conducticity of thin wires. Proceeding of the Royal Society A Mathematical, Physical and Engineering Sciences, 1950, [http://doi.org/10.1098/rspa.1950.0077]. DOI: https://doi.org/10.1098/rspa.1950.0077

Fedotov A., Mazanik A., Svito I., Saad A., Fedotova V., Czarnacka K., Kołtunowicz T. K.: Mechanism of Carrier Transport in Cux(SiO2)1-x Nanocomposites Manufactured by Ion-Beam Sputtering with Ar Ions, Acta Physica Polonica A 128, 2015, [http://doi.org/10.12693/APhysPolA.128.883]. DOI: https://doi.org/10.12693/APhysPolA.128.883

Giroire B., Ali Ahmad M., Aubert G., Teule-Gay L., Michau D., Watkins J. J., Aymonier C., Poulon-Quintin A.: A comparative study of copper thin films deposited using magnetron sputtering and supercritical fluid deposition techniques, Thin Solid Films 643, 2017, 53–59, [http://doi.org/10.1016/j.tsf.2017.09.002]. DOI: https://doi.org/10.1016/j.tsf.2017.09.002

Grimmet G.: Percolation, 2nd ed. Springer-Verlag, Berlin 1999, [http://doi.org/10.1007/978-3-662-03981-6]. DOI: https://doi.org/10.1007/978-3-662-03981-6

Hill R. M.: Electrical conduction in discontinuous metal films. Contemporary Physics 10, 1969, 221–240, [http://doi.org/10.1080/00107516908224594]. DOI: https://doi.org/10.1080/00107516908224594

Imantalab O., Fattah-alhosseini A., Keshavarz M. K., Mazaheri Y.: Electrochemical Behavior of Pure Copper in Phosphate Buffer Solutions: A Comparison Between Micro- and Nano-Grained Copper. Journal of Materials Engineering and Performance 25, 2016, 697–703, [http://doi.org/10.1007/s11665-015-1836-z]. DOI: https://doi.org/10.1007/s11665-015-1836-z

Kah-Toong Chan, Teck-Yong Tou, Bee-San Teo: Thickness dependence of the structural and electrical properties of copper films deposited by dc magnetron sputtering technique. Microelectronics Journal 37(7), 2006, 608–612, [http://doi.org/10.1016/j.mejo.2005.09.016]. DOI: https://doi.org/10.1016/j.mejo.2005.09.016

Kołtunowicz T. N., Żukowski P., Czarnacka K., Bondariev V., Boiko O., Scito I. A., Fedotov A. K.: Dielectric properties of nanocomposite (Cu)x(SiO2)(100−x) produced by ion-beam sputtering. Journal of Alloys and Compounds 652, 2015, 444–449, [http://doi.org/10.1016/j.jallcom.2015.08.240]. DOI: https://doi.org/10.1016/j.jallcom.2015.08.240

Lacy F.: Developing a theoretical relationship between electrical resistivity, temperature, and film thickness for conductors. Nanoscale Research Letters 6, 2011, 1–14, [http://doi.org/10.1186/1556-276X-6-636]. DOI: https://doi.org/10.1186/1556-276X-6-636

Lim J. W., Isshiki M.: Electrical resistivity of Cu films deposited by ion beam deposition: Effects of grain size, impurities, and morphological defect. Journal of Applied Physics 99, 2006, 094909-1–094909-7, [http://doi.org/10.1063/1.2194247]. DOI: https://doi.org/10.1063/1.2194247

Lin Zhang, Xu Lu, Xinyu Zhang, Li Jin, Zhou Xu, Z.-Y. Cheng: All-organic dielectric nanocomposites using conducting polypyrrole nanoclips as filler. Composites Science and Technology 167, 2018, 285–293, [http://doi.org/10.1016/j.compscitech.2018.08.017]. DOI: https://doi.org/10.1016/j.compscitech.2018.08.017

Liu H.-D., Zhao Y.-P., Ramanath G., Murarka S. P., Wang G.-C.: Thickness dependent electrical resistivity of ultrathin (<40 nm) Cu films. Thin Solid Films 384(1), 2011, 151–156, [http://doi.org/10.1016/S0040-6090(00)01818-6]. DOI: https://doi.org/10.1016/S0040-6090(00)01818-6

Mech K., Kowalik R., Żabiński P.: Cu thin films deposited by DC magnetron sputtering for contact surfaces on electronic components. Archives of Metallurgy and Materials 56(4), 2011, 903–908, [http://doi.org/10.2478/v10172-011-0099-4]. DOI: https://doi.org/10.2478/v10172-011-0099-4

Mott N. F., Davies E. A.: Electronic process in non-crystalline materials. Claredon Press, Oxford 1979.

Poklonskii N. A., Gorbachuk N. I.: Fundamentals of impedance Spectroscopy of composites. Belarusian State University, Minsk 2005.

Svito I., Fedotov A. K., Kołtunowicz T. N., Żukowski P., Kalinin Y., Sitnikov A., Czarnacka K., Saad A.: Hopping of electron transport in granular Cux(SiO2)1–x nanocomposite films deposited by ion-beam sputtering. Journal of Alloys and Compounds 615, 2014, S371–S374, [http://doi.org/10.1016/j.jallcom.2014.01.136]. DOI: https://doi.org/10.1016/j.jallcom.2014.01.136

Yang Yu.: Deposited mono-component Cu metallic glass: a molecular dynamics study Materials Today Communications 26, 2021, 102083-1–102083-5, [http://doi.org/10.1016/j.mtcomm.2021.102083]. DOI: https://doi.org/10.1016/j.mtcomm.2021.102083

Yarimbiyik A. E., Schafft H. A., Allen R. A., Vaudin M. D., Zaghloul M. E.: Experimental and simulation studies of resistivity in nanoscale copper films, Microelectronics Reliability 42(2), 2009, 127–134, [http://doi.org/10.1016/j.microrel.2008.11.003]. DOI: https://doi.org/10.1016/j.microrel.2008.11.003

Zhigal'skii, G. P., Jones B. K.: The physical properties of thin metal films. Vol. 13. CRC Press, London 2003. DOI: https://doi.org/10.1201/9780367801113

Żukowski P., Kołtunowicz T. K., Partyka J., Węgierek P.: Dielectric properties and model of hopping conductivity of GaAs irradiated by H + ions, Vacuum 81(10), 2007, 1137–1140, [http://doi.org/10.1016/j.vacuum.2007.01.070]. DOI: https://doi.org/10.1016/j.vacuum.2007.01.070

Żukowski P., Kołtunowicz T. N., Boiko O., Bondariev V., Czarnacka K., Fedotova J. A., Fedotov A. K., Svito I. A.: Impedance model of metal-dielectric nanocomposites produced by ion-beam sputtering in vacuum conditions and its experimental verification for thin films of (FeCoZr)x(PZT)(100−x), Vacuum 120, 2015, 37–43, [http://doi.org/10.1016/j.vacuum.2015.04.035]. DOI: https://doi.org/10.1016/j.vacuum.2015.04.035

Żukowski P., Kołtunowicz T. N., Partyka J., Fedotova Yu. A., Larkin A. V.: Hopping conductivity of metal-dielectric nanocomposites produced by means of magnetron sputtering with the application of oxygen and argon ions. Vacuum 83(3), 2009, S280–S283, [http://doi.org/10.1016/j.vacuum.2009.01.082]. DOI: https://doi.org/10.1016/j.vacuum.2009.01.082

Download

Published : 2022-03-31


Wilczyńska, A., Czarnacka, K., Kociubiński, A., & Kołtunowicz, T. (2022). Development of deposition technology and AC measurement of copper ultrathin layers. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 12(1), 36-39. https://doi.org/10.35784/iapgos.2888

Aleksandra Wilczyńska  aleksandra.wilczynska@pollub.edu.pl
Lublin University of Technology, Department of Electrical Devices and High Voltage Technology  Poland
http://orcid.org/0000-0002-5630-1078
Karolina Czarnacka 
University of Life Sciences in Lublin, Department of Technology Fundamentals  Poland
http://orcid.org/0000-0003-1434-734X
Andrzej Kociubiński 
Lublin University of Technology, Department of Electronic and Information Technology  Poland
http://orcid.org/0000-0002-0377-8243
Tomasz Kołtunowicz 
Lublin University of Technology, Department of Electrical Devices and High Voltage Technology  Poland
http://orcid.org/0000-0001-7480-4931