Classification of cyber attacks in IoMT networks using deep learning: a comparative study
Article Sidebar
Open full text
Issue Vol. 36 (2025)
-
Classification of cyber attacks in IoMT networks using deep learning: a comparative study
Asif Rahman Rumee232-242
-
Assessing the memorability and usability of the Gutenberg Editor Interface in the Drupal CMS
Paweł Iwon, Marek Miłosz243-250
-
Analysis of the directions of development of digital aesthetics on the example of Windows interfaces
Maksymilian Cegiełka, Marek Miłosz251-257
-
Analysis of the effectiveness of the portal integrating various tender platforms
Adrian Krzysztof Jedynak, Marek Miłosz258-261
-
Review and assessment of the quality of applications related to diet man-agement using the Mobile App Rating Scale (MARS)
Kamil Lewartowski, Marek Miłosz262-265
-
Comparison of the accessibility of websites of voivodeship cities in Poland
Dawid Drzewiecki, Marek Miłosz266-270
-
Study of factors affecting the performance of web applications on mobile devices
Jarosław Królikowski, Marek Miłosz271-277
-
The impact of changing graphic settings on performance in selected video games
Łukasz Stanik, Marek Miłosz278-283
-
Analysis of the use of Angular and Svelte products in mobile web applications
Michał Nurzyński, Marcin Badurowicz284-288
-
Comparative analysis of web and mobile interfaces of popular sales portals
Kacper Dudek, Marek Miłosz289-295
-
Comperative analasys of JavaScript runtime environments
Konrad Kalman, Marek Miłosz296-302
-
Image classification using PyTorch and Core ML
Jakub Ślusarski, Arkadiusz Szumny, Maria Skublewska-Paszkowska303-311
-
Analysis of ergonomics and security of email software
Marceli Szarapajew, Tomasz Szymczyk312-319
-
Comparative analysis of Cypress and Playwright frameworks in end-to-end testing for applications based on Angular
Przemysław Gosik, Marek Miłosz320-327
-
Password managers: a critical review of security, usability, and innovative designs
Hussein Abdulkhaleq Saleh328-335
-
Benchmarking the performance of Python web frameworks
Bartłomiej Bednarz, Marek Miłosz336-341
-
Comparison of chosen image classification methods on Android
Mariusz Zapalski, Patryk Żabczyński, Paweł Powroźnik342-349
-
Performance evaluation of REST and GraphQL API aproaches in data retrieval scenarios using NestJS
Kacper Stępień, Maria Skublewska-Paszkowska350-356
-
Comparative analysis of cross-platform application development tools in terms of operating system integration
Rafał Milichiewicz, Marcin Badurowicz357-364
-
Comparative analysis of selected mobile applications for language learning
Jakub Furtak, Emilia Drabik365-370
Main Article Content
DOI
Authors
Abstract
The Internet of Medical Things (IoMT) is transforming healthcare through enhanced remote monitoring and real-time data exchange, but it also introduces significant cybersecurity challenges. This study evaluates various deep learning architectures - Feedforward Neural Networks (FNN), Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), Gated Recurrent Units (GRU), Long Short-Term Memory networks (LSTM), and Bi-LSTM - for classifying cyber-attacks in IoMT networks. Utilizing the ECU-IoHT dataset, the Bi-LSTM and CNN models demonstrated superior performance, achieving 60% and 60% accuracy, 75% and 86% precision, 60% and 60% recall, and 63% and 61% F1-score, respectively. These results highlight the effectiveness of Bi-LSTM and CNN in enhancing cybersecurity measures within the IoMT, underscoring their potential to safeguard connected medical devices.
Keywords:
References
[1] S. Tarikere, I. Donner, D. Woods, Diagnosing a heal-thcare cybersecurity crisis: The impact of IoMT advan-cements and 5G, Business horizons 64(6) (2021) 799-807, https://doi.org/10.1016/j.bushor.2021.07.015. DOI: https://doi.org/10.1016/j.bushor.2021.07.015
[2] K. S. Bughio, D. M. Cook, S. A. A. Shah, Developing a Novel Ontology for Cybersecurity in Internet of Me-dical Things-Enabled Remote Patient Monito-ring, Sensors 24(9) (2024) 2804-2825, https://doi.org/10.3390/s24092804. DOI: https://doi.org/10.3390/s24092804
[3] N. M. Thomasian, E. Y. Adashi, Cybersecurity in the internet of medical things, Health Policy and Techno-logy 10(3) (2021) 100549, https://doi.org/10.1016/j.hlpt.2021.100549. DOI: https://doi.org/10.1016/j.hlpt.2021.100549
[4] A. Djenna, D. E. Saïdouni, Cyber attacks classification in IoT-based-healthcare infrastructure, In 2018 2nd Cyber Security in Networking Conference (CSNet) (2018) 1-4, https://doi.org/10.1109/CSNET.2018.8602974. DOI: https://doi.org/10.1109/CSNET.2018.8602974
[5] U. A. Adeniyi, A. M. Oyelakin, A survey on promising datasets and recent machine learning approaches for the classification of attacks in Internet of Things, Journal of Information Technology and Com-puting 4(2) (2023) 31-38, https://doi.org/10.48185/jitc.v4i2.890. DOI: https://doi.org/10.48185/jitc.v4i2.890
[6] S. Abbas, I. Bouazzi, S. Ojo, A. Al Hejaili, G. A. Sampedro, A. Almadhor, M. Gregus, Evaluating deep learning variants for cyber-attacks detection and mul-ti-class classification in IoT networks, PeerJ Computer Science 10 (2024) 1793-1815, https://doi.org/10.7717/peerj-cs.1793. DOI: https://doi.org/10.7717/peerj-cs.1793
[7] A. K. B. Arnob, A. I. Jony, Enhancing IoT Security: A Deep Learning Approach with Feedforward Neural Network for Detecting Cyber Attacks in IoT, Malaysian Journal of Science and Advanced Technology 4(4) (2024) 413-420, https://doi.org/10.56532/mjsat.v4i4.299. DOI: https://doi.org/10.56532/mjsat.v4i4.299
[8] A. Alrefaei, M. Ilyas, Ensemble Deep Learning Model based on Multi-Class Classification Technique to De-tect Cyber Attacks in IoT Environment, In 2024 Inter-national Conference on Smart Computing, IoT and Ma-chine Learning (SIML) (2024) 174-179, https://doi.org/10.1109/siml61815.2024.10578143. DOI: https://doi.org/10.1109/SIML61815.2024.10578143
[9] P. Suresh, P. Keerthika, S. Maheswaran, K. K. Sa-dasivuni, N. Anusha, S. S. Gokhale, A Contemporary Survey on the Effectiveness of Machine Learning for Detection and Classification of Cyber Attacks in IoT Systems, Cases on Security, Safety, and Risk Manage-ment (2025) 41-58, https://doi.org/10.4018/979-8-3693-2675-6.ch003. DOI: https://doi.org/10.4018/979-8-3693-2675-6.ch003
[10] S. Alalawi, M. Alalawi, R. Alrae, Privacy Preservation for the IoMT Using Federated Learning and Block-chain Technologies, In The International Conference on Innovations in Computing Research (2024) 713-731, https://doi.org/10.1007/978-3-031-65522-7_62. DOI: https://doi.org/10.1007/978-3-031-65522-7_62
[11] S. Das, T. K. Samal, B. K. Mohanta, Addressing Securi-ty in IoMT Systems: A Blockchain Consensus Ap-proach, In 2024 15th International Conference on Computing Communication and Networking Technol-ogies (ICCCNT) (2024) 1-6, https://doi.org/10.1109/ICCCNT61001.2024.10725986. DOI: https://doi.org/10.1109/ICCCNT61001.2024.10725986
[12] A. Berguiga, A. Harchay, A. Massaoudi, HIDS-IoMT: A deep Learning-Based intelligent intrusion detection system for the internet of medical things, IEEE Access 13 (2025) 32863-32882, https://doi.org/10.1109/ACCESS.2025.3543127. DOI: https://doi.org/10.1109/ACCESS.2025.3543127
[13] A. Kumar, R. Gupta, S. Kumar, K. Dutta, M. Rani, Securing IoMT‐Based Healthcare System: Issues, Chal-lenges, and Solutions, Artificial Intelligence and Cy-bersecurity in Healthcare (2025) 17-56, https://doi.org/10.1002/9781394229826.ch2. DOI: https://doi.org/10.1002/9781394229826.ch2
[14] A. Mabina, N. Rafifing, B. Seropola, T. Monageng, P. Majoo, Challenges in IoMT Adoption in Healthcare: Focus on Ethics, Security, and Privacy, Journal of In-formation Systems and Informatics 6(4) (2024) 3162-3184, https://doi.org/10.51519/journalisi.v6i4.960. DOI: https://doi.org/10.51519/journalisi.v6i4.960
[15] G. Bebis, M. Georgiopoulos, Feed-forward neural networks, Ieee Potentials 13(4) (1994) 27-31, https://doi.org/10.1109/45.329294. DOI: https://doi.org/10.1109/45.329294
[16] K. O'shea, R. Nash, An introduction to convolutional neural networks, arXiv preprint (2015), https://arxiv.org/abs/1511.08458.
[17] L. Medsker, L. C. Jain, Recurrent neural networks: design and applications, CRC press, Boca Raton, 1999. DOI: https://doi.org/10.1201/9781420049176
[18] J. Chung, C. Gulcehre, K. Cho, Y. Bengio, Empirical evaluation of gated recurrent neural networks on se-quence modeling, arXiv preprint (2014), https://arxiv.org/abs/1412.3555.
[19] J. Cheng, L. Dong, M. Lapata, Long short-term memory-networks for machine reading, arXiv preprint (2016), https://arxiv.org/abs/1601.06733. DOI: https://doi.org/10.18653/v1/D16-1053
[20] A. Graves, S. Fernández, J. Schmidhuber, Bidirectional LSTM networks for improved phoneme classification and recognition, In International conference on artifi-cial neural networks (2005) 799-804, https://doi.org/10.1007/11550907_126. DOI: https://doi.org/10.1007/11550907_126
Article Details
Abstract views: 172

