Image classification using PyTorch and Core ML
Article Sidebar
Open full text
Issue Vol. 36 (2025)
-
Classification of cyber attacks in IoMT networks using deep learning: a comparative study
Asif Rahman Rumee232-242
-
Assessing the memorability and usability of the Gutenberg Editor Interface in the Drupal CMS
Paweł Iwon, Marek Miłosz243-250
-
Analysis of the directions of development of digital aesthetics on the example of Windows interfaces
Maksymilian Cegiełka, Marek Miłosz251-257
-
Analysis of the effectiveness of the portal integrating various tender platforms
Adrian Krzysztof Jedynak, Marek Miłosz258-261
-
Review and assessment of the quality of applications related to diet man-agement using the Mobile App Rating Scale (MARS)
Kamil Lewartowski, Marek Miłosz262-265
-
Comparison of the accessibility of websites of voivodeship cities in Poland
Dawid Drzewiecki, Marek Miłosz266-270
-
Study of factors affecting the performance of web applications on mobile devices
Jarosław Królikowski, Marek Miłosz271-277
-
The impact of changing graphic settings on performance in selected video games
Łukasz Stanik, Marek Miłosz278-283
-
Analysis of the use of Angular and Svelte products in mobile web applications
Michał Nurzyński, Marcin Badurowicz284-288
-
Comparative analysis of web and mobile interfaces of popular sales portals
Kacper Dudek, Marek Miłosz289-295
-
Comperative analasys of JavaScript runtime environments
Konrad Kalman, Marek Miłosz296-302
-
Image classification using PyTorch and Core ML
Jakub Ślusarski, Arkadiusz Szumny, Maria Skublewska-Paszkowska303-311
-
Analysis of ergonomics and security of email software
Marceli Szarapajew, Tomasz Szymczyk312-319
-
Comparative analysis of Cypress and Playwright frameworks in end-to-end testing for applications based on Angular
Przemysław Gosik, Marek Miłosz320-327
-
Password managers: a critical review of security, usability, and innovative designs
Hussein Abdulkhaleq Saleh328-335
-
Benchmarking the performance of Python web frameworks
Bartłomiej Bednarz, Marek Miłosz336-341
-
Comparison of chosen image classification methods on Android
Mariusz Zapalski, Patryk Żabczyński, Paweł Powroźnik342-349
-
Performance evaluation of REST and GraphQL API aproaches in data retrieval scenarios using NestJS
Kacper Stępień, Maria Skublewska-Paszkowska350-356
-
Comparative analysis of cross-platform application development tools in terms of operating system integration
Rafał Milichiewicz, Marcin Badurowicz357-364
-
Comparative analysis of selected mobile applications for language learning
Jakub Furtak, Emilia Drabik365-370
Main Article Content
DOI
Authors
arkadiusz.szumny@pollub.edu.pl
Abstract
The aim of the study was to compare different machine learning models trained using the PyTorch library in Python and the Core ML library in the Create ML tool. In the case of PyTorch, using transfer learning on a pre-trained ResNet50 model, data augmentation and normalization, four models were trained on two various data sets, achieving accuracy, precision, recall and F1 score above 80%. Four identical models were trained on the same data sets in the Create ML tool, and the conversion of the PyTorch models to the Core ML format allowed for a reliable comparison. This also emphasizes the effectiveness of conversion using the coremltools library, while maintaining model performance. The study emphasizes the key role of dataset quality and techniques for improving dataset quality.
Keywords:
References
[1] S. M. Anwar, M. Majid, A. Qayyum, M. Awais, M. Alnowami, M. K. Khan, Medical image analysis using convolutional neural networks: a review, Journal of Medical Systems 42 (2018) 1–13, https://doi.org/10.1007/s10916-018-1088-1. DOI: https://doi.org/10.1007/s10916-018-1088-1
[2] M. Skublewska-Paszkowska, P. Powroźnik, E. Łukasik, J. Smołka, Tennis Patterns Recognition Based on a Novel Tennis Dataset – 3DTennisDS, Advances in Science and Technology Research Journal 18(6) (2024) 159-176, http://dx.doi.org/10.12913/22998624/191264. DOI: https://doi.org/10.12913/22998624/191264
[3] M. Skublewska-Paszkowska, P. Powroźnik, Temporal Pattern Attention for Multivariate Time Series of Tennis Strokes Classification, Sensors 23(5) (2023) 1-16, https://doi.org/10.3390/s23052422. DOI: https://doi.org/10.3390/s23052422
[4] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. W. M. van der Laak, B. van Ginneken, C. I. Sánchez, A survey on deep learning in medical image analysis, Medical Image Analysis 42 (2017) 60–88, https://doi.org/10.1016/j.media.2017.07.005. DOI: https://doi.org/10.1016/j.media.2017.07.005
[5] M. Skublewska-Paszkowska, P. Powroźnik, R. Rejdak, K. Nowomiejska, Application of Convolutional Gated Recurrent Units U-Net for Distinguishing between Retinitis Pigmentosa and Cone-Rod Dystrophy, Acta Mechanica et Automatica 18(3) (2024) 505-513, http://dx.doi.org/10.2478/ama-2024-0054. DOI: https://doi.org/10.2478/ama-2024-0054
[6] P. Powroźnik, M. Skublewska-Paszkowska, K. Nowomiejska, A. Aristidou, A. Panayides, R. Rejdak, Deep convolutional generative adversarial networks in retinitis pigmentosa disease images augmentation and detection, Advances in Science and Technology Research Journal 19(2) (2025) 321-340, http://dx.doi.org/10.12913/22998624/196179. DOI: https://doi.org/10.12913/22998624/196179
[7] K. Nowomiejska, P. Powroźnik, M. Skublewska-Paszkowska, K. Adamczyk, M. Concilio, L. Sereikaite, R. Zemaitiene, M. D. Toro, R. Rejdak, Residual Attention Network for distinction between visible optic disc drusen and healthy optic discs, Optics and Lasers in Engineering 176 (2024) 1-12, https://ui.adsabs.harvard.edu/link_gateway/2024OptLE.17608056N/doi:10.1016/j.optlaseng.2024.108056. DOI: https://doi.org/10.1016/j.optlaseng.2024.108056
[8] A. Kamilaris, F. X. Prenafeta-Boldú, Deep learning in agriculture: A survey, Computers and Electronics in Agriculture 147 (2018) 70–90, https://doi.org/10.1016/j.compag.2018.02.016. DOI: https://doi.org/10.1016/j.compag.2018.02.016
[9] Y. Zhang, L. Deng, H. Zhu, W. Wang, Z. Ren, Q. Zhou, S. Lu, S. Sun, Z. Zhu, J. M. Gorriz, S. Wang, Deep learning in food category recognition, Information Fusion 98 (2023) 101859, https://doi.org/10.1016/j.inffus.2023.101859. DOI: https://doi.org/10.1016/j.inffus.2023.101859
[10] H. L. Dawson, O. Dubrule, C. M. John, Impact of dataset size and convolutional neural network architecture on transfer learning for carbonate rock classification, Computers & Geosciences 171 (2023) 105284, https://doi.org/10.1016/j.cageo.2022.105284. DOI: https://doi.org/10.1016/j.cageo.2022.105284
[11] M. Skublewska-Paszkowska, P. Powroźnik, E. Łukasik, Attention Temporal Graph Convolutional Network for Tennis Groundstrokes Phases Classification, IEEE International Conference on Fuzzy Systems (FUZZ) (2022) 1-8, https://doi.org/10.1109/FUZZ-IEEE55066.2022.9882822. DOI: https://doi.org/10.1109/FUZZ-IEEE55066.2022.9882822
[12] M. Skublewska-Paszkowska, P. Powroźnik, E. Łukasik, Learning Three Dimensional Tennis Shots Using Graph Convolutional Networks, Sensors 20(21) (2020) 1-12, https://doi.org/10.3390/s20216094. DOI: https://doi.org/10.3390/s20216094
[13] K. Sharifani, M. Amini, Machine learning and deep learning: A review of methods and applications, World Information Technology and Engineering Journal 10(07) (2023) 3897–3904.
[14] M. A. Berwo, A. Khan, Y. Fang, H. Fahim, S. Javaid, J. Mahmood, Z. Ul Abideen, M. S. Syam, Deep learning techniques for vehicle detection and classification from images/videos: A survey, Sensors 23(10) (2023) 4832, https://doi.org/10.3390/s23104832. DOI: https://doi.org/10.3390/s23104832
[15] Y. Gao, X. Xue, G. Qin, K. Li, J. Liu, Y. Zhang, X. Li, Application of machine learning in automatic image identification of insects-a review, Ecological Informatics 80 (2024) 102539, https://doi.org/10.1016/j.ecoinf.2024.102539. DOI: https://doi.org/10.1016/j.ecoinf.2024.102539
[16] M. H. Guo, T. X. Xu, J. J. Liu, Z. N. Liu, P. T. Jiang, T. J. Mu, S. H. Zhang, R. R. Martin, M. M. Cheng, S. M. Hu, Attention mechanisms in computer vision: A survey, Computational Visual Media 8(3) (2022) 331–368, https://doi.org/10.1007/s41095-022-0271-y. DOI: https://doi.org/10.1007/s41095-022-0271-y
[17] M. Skublewska-Paszkowska, P. Powroźnik, M. Barszcz, K. Dziedzic, Dual Attention Graph Convolutional Neural Network to Support Mocap Data Animation, Advances in Science and Technology Research Journal 17 (5) (2023) 313-325, http://dx.doi.org/10.12913/22998624/171592. DOI: https://doi.org/10.12913/22998624/171592
[18] G. Huang, G. B. Huang, S. Song, K. You, Trends in extreme learning machines: A review, Neural Networks 61 (2014) 10–26, https://doi.org/10.1016/j.neunet.2014.10.001. DOI: https://doi.org/10.1016/j.neunet.2014.10.001
[19] M. J. Maurício, I. Domingues, J. Bernardino, Comparing vision transformers and convolutional neural networks for image classification: A literature review, Applied Sciences 13(9) (2023) 5521, https://doi.org/10.3390/app13095521. DOI: https://doi.org/10.3390/app13095521
[20] O. Qayyum, M. Şah, IOS mobile application for food and location image prediction using convolutional neural networks, In 2018 IEEE 5th International Conference on Engineering Technologies and Applied Sciences (ICETAS) (2018) 1–6, https://doi.org/10.1109/ICETAS.2018.8629202. DOI: https://doi.org/10.1109/ICETAS.2018.8629202
[21] H. Hendrick, W. Zhi-Hao, C. Hsien, C. Pei-Lun, G. J. Jia, IOS mobile APP for tuberculosis detection based on chest X-ray image, In 2019 2nd International Conference on Applied Information Technology and Innovation (ICAITI) (2019) 122–125, https://doi.org/10.1109/ICAITI48442.2019.8982152. DOI: https://doi.org/10.1109/ICAITI48442.2019.8982152
[22] R. Kaur, R. Kumar, M. Gupta, Deep neural network for food image classification and nutrient identification: A systematic review, Reviews in Endocrine and Metabolic Disorders 24(4) (2023) 633–653, https://doi.org/10.1007/s11154-023-09795-4. DOI: https://doi.org/10.1007/s11154-023-09795-4
[23] J. Bharadiya, Convolutional neural networks for image classification, International Journal of Innovative Science and Research Technology 8(5) (2023) 673–677, https://doi.org/10.5281/zenodo.7952030.
[24] M. Koklu, Rice Image Dataset, Kaggle, https://www.kaggle.com/datasets/muratkokludataset/rice-image-dataset, [12.01.2025].
[25] J. Bhathena, Weather Dataset, Kaggle, https://www.kaggle.com/datasets/jehanbhathena/weather-dataset, [12.01.2025].
[26] Albumentations, Image Augmentation Library, https://albumentations.ai/, [12.01.2025].
[27] K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016) 770–778, http://dx.doi.org/10.1109/CVPR.2016.90. DOI: https://doi.org/10.1109/CVPR.2016.90
[28] D. Chicco, G. Jurman, The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation, BMC Genomics 21(6) (2020) 1–13, https://doi.org/10.1186/s12864-019-6413-7. DOI: https://doi.org/10.1186/s12864-019-6413-7
Article Details
Abstract views: 148

