BREAST CANCER DIAGNOSIS USING WRAPPER-BASED FEATURE SELECTION AND ARTIFICIAL NEURAL NETWORK
Article Sidebar
Open full text
Issue Vol. 17 No. 3 (2021)
-
PERFORMANCE ENHANCEMENT OF CUDA APPLICATIONS BY OVERLAPPING DATA TRANSFER AND KERNEL EXECUTION
K. Raju, Niranjan N Chiplunkar5-18
-
BREAST CANCER DIAGNOSIS USING WRAPPER-BASED FEATURE SELECTION AND ARTIFICIAL NEURAL NETWORK
Nawazish NAVEED, Hayan T. MADHLOOM, Mohd Shahid HUSAIN19-30
-
APPLICATION OF A FUZZY CONTROLLER IN THE PROCESS OF AUTOMATED POLYETHYLENE FILM THICKNESS CONTROL
Andrzej Jardzioch, Wioletta Marczak31-46
-
OPTIMAL SLIDING MODE CONTROLLER DESIGN BASED ON WHALE OPTIMIZATION ALGORITHM FOR LOWER LIMB REHABILITATION ROBOT
Noor SABAH, Ekhlas HAMEED, Muayed S AL-HUSEINY47-59
-
BACKWARD MOTION PLANNING AND CONTROL OF MULTIPLE MOBILE ROBOTS MOVING IN TIGHTLY COUPLED FORMATIONS
Kuppan Chetty RAMANATHAN, Manju MOHAN, Joshuva AROCKIA DHANRAJ60-72
-
RGB-D FACE RECOGNITION USING LBP-DCT ALGORITHM
Sunil Kumar B L, Sharmila Kumari M73-81
-
IMPLEMENTATION OF DYNAMIC AND FAST MINING ALGORITHMS ON INCREMENTAL DATASETS TO DISCOVER QUALITATIVE RULES
Pannangi Naresh, R. Suguna82-91
-
INNOVATIVE DEVICE FOR TENSILE STRENGTH TESTING OF WELDED JOINTS: 3D MODELLING, FEM SIMULATION AND EXPERIMENTAL VALIDATION OF TEST RIG – A CASE STUDY
Mateusz Sawa, Mirosław Szala, Weronika Henzler92-105
Archives
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
-
Vol. 15 No. 4
2019-12-30 8
-
Vol. 15 No. 3
2019-09-30 8
-
Vol. 15 No. 2
2019-06-30 8
-
Vol. 15 No. 1
2019-03-30 8
Main Article Content
DOI
Authors
Abstract
Breast cancer is commonest type of cancers among women. Early diagnosis plays a significant role in reducing the fatality rate. The main objective of this study is to propose an efficient approach to classify breast cancer tumor into either benign or malignant based on digitized image of a fine needle aspirate (FNA) of a breast mass represented by the Wisconsin Breast Cancer Dataset. Two wrapper-based feature selection methods, namely, sequential forward selection(SFS) and sequential backward selection (SBS) are used to identify the most discriminant features which can contribute to improve the classification performance. The feed forward neural network (FFNN) is used as a classification algorithm. The learning algorithm hyper-parameters are optimized using the grid search process. After selecting the optimal classification model, the data is divided into training set and testing set and the performance was evaluated. The feature space is reduced from nine feature to seven and six features using SFS and SBS respectively. The highest classification accuracy recorded was 99.03% with FFNN using the seven SFS selected features. While accuracy recorded with the six SBS selected features was 98.54%. The obtained results indicate that the proposed approach is effective in terms of feature space reduction leading to better accuracy and efficient classification model.
Keywords:
References
Addeh, A., Demirel, H., & Zarbakhsh, P. (2017). Early detection of breast cancer using optimized ANFIS and features selection. 2017 9th International Conference on Computational Intelligence and Communication Networks (CICN) (pp. 39–42). IEEE. http://doi.org/10.1109/CICN.2017.8319352 DOI: https://doi.org/10.1109/CICN.2017.8319352
Agrawal, S., & Agrawal, J. (2015). Neural network techniques for cancer prediction: A survey. Procedia Computer Science, 60, 769–774. http://doi.org/10.1016/j.procs.2015.08.234 DOI: https://doi.org/10.1016/j.procs.2015.08.234
Ang, J. C., Mirzal, A., Haron, H., & Hamed, H. N. A. (2015). Supervised, unsupervised, and semi-supervised feature selection: a review on gene selection. IEEE/ACM transactions on computational biology and bioinformatics, 13(5), 971–989. http://doi.org/10.1109/TCBB.2015.2478454 DOI: https://doi.org/10.1109/TCBB.2015.2478454
Barna, S. D., & Khan, S. (2019). Performance Evaluation of Classification Learning Models for Wisconsin Breast Cancer Data Repository. 7th International Conference on Data Science and SDGs: Challenges, Opportunities and Realities (EC-50). Bangladesh.
Bonakdari, H., Moradi, F., Ebtehaj, I., Gharabaghi, B., Sattar, A. A., Azimi, A. H., & Radecki-Pawlik, A. (2020). A Non-Tuned Machine Learning Technique for Abutment Scour Depth in Clear Water Condition. Water, 12(1), 301. http://doi.org/10.3390/w12010301 DOI: https://doi.org/10.3390/w12010301
Casaubon, J. T., Tomlinson-Hansen, S., & Regan, J.-P. (2020). Fine Needle Aspiration of Breast Masses. StatPearls. StatPearls Publishing.
Dhungel, N., Carneiro, G., & Bradley, A. P. (2015). Automated Mass Detection in Mammograms Using Cascaded Deep Learning and Random Forests. International Conference on Digital Image Computing: Techniques and Applications (DICTA) (pp. 1–8). IEEE. http://doi.org/10.1109/DICTA.2015.7371234 DOI: https://doi.org/10.1109/DICTA.2015.7371234
Douangnoulack, P., & Boonjing, V. (2018). Building Minimal Classification Rules for Breast Cancer Diagnosis. 2018 10th International Conference on Knowledge and Smart Technology (KST) (pp. 278–281). IEEE. http://doi.org/10.1109/KST.2018.8426198 DOI: https://doi.org/10.1109/KST.2018.8426198
Ed-Daoudy, A., & Maalmi, K. (2020). Breast cancer classification with reduced feature set using association rules and support vector machine. Network Modeling Analysis in Health Informatics and Bioinformatics, 9(1), 34. http://doi.org/10.1007/s13721-020-00237-8 DOI: https://doi.org/10.1007/s13721-020-00237-8
Foithong, S., Srinil, P., & Pinngern, O. (2017). Min-Uncertainty & Max-Certainty Criteria of Neighborhood Rough-Mutual Feature Selection. Walailak Journal of Science and Technology, 14(4).
Guliyev, N. J., & Ismailov, V. E. (2018). On the approximation by single hidden layer feedforward neural networks with fixed weights. Neural Networks, 98, 296-304. http://doi.org/10.1016/j.neunet.2017.12.007 DOI: https://doi.org/10.1016/j.neunet.2017.12.007
Guyon, I., Gunn, S., Nikravesh, M., & Zadeh, L. A. (2008). Feature extraction: foundations and applications (Vol. 207). Springer. http://doi.org/10.1007/978-3-540-35488-8 DOI: https://doi.org/10.1007/978-3-540-35488-8
Hsu, Y.-C., Tsai, Y.-H., Weng, H.-H., Hsu, L.-S., Tsai, Y.-H., Lin, Y.-C., Hung, M.-S., Fang, Y.-H., & Chen, C.-W. (2020). Artificial neural networks improve LDCT lung cancer screening: a comparative validation study. BMC Cancer, 20(1), 1023. https://doi.org/10.1186/s12885-020-07465-1 DOI: https://doi.org/10.1186/s12885-020-07465-1
Islam, M. M., Haque, M. R., Iqbal, H., Hasan, M. M., Hasan, M., & Kabir, M. N. (2020). Breast Cancer Prediction: A Comparative Study Using Machine Learning Techniques. SN Computer Science, 1(5), 290. https://doi.org/10.1007/s42979-020-00305-w DOI: https://doi.org/10.1007/s42979-020-00305-w
Jain, D., & Singh, V. (2018). Feature selection and classification systems for chronic disease prediction: A review. Egyptian Informatics Journal, 19(3), 179–189. https://doi.org/10.1016/j.eij.2018.03.002 DOI: https://doi.org/10.1016/j.eij.2018.03.002
Khan, A., Shah, R., Imran, M., Khan, A., Bangash, J. I., & Shah, K. (2019). An alternative approach to neural network training based on hybrid bio meta-heuristic algorithm. Journal of Ambient Intelligence and Humanized Computing, 10(10), 3821-3830. https://doi.org/10.1007/s12652-019-01373-4 DOI: https://doi.org/10.1007/s12652-019-01373-4
Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial intelligence, 97(1–2), 273–324. https://doi.org/10.1016/S0004-3702(97)00043-X DOI: https://doi.org/10.1016/S0004-3702(97)00043-X
Kumar, V. (2021). Evaluation of computationally intelligent techniques for breast cancer diagnosis. Neural Computing and Applications, 33(8), 3195–3208. https://doi.org/10.1007/s00521-020-05204-y DOI: https://doi.org/10.1007/s00521-020-05204-y
Kumar, V., & Minz, S. (2014). Feature selection: a literature review. SmartCR, 4(3), 211-229. DOI: https://doi.org/10.6029/smartcr.2014.03.007
Kumari, M., & Singh, V. (2018). Breast Cancer Prediction system. Procedia Computer Science, 132, 371–376. https://doi.org/10.1016/j.procs.2018.05.197 DOI: https://doi.org/10.1016/j.procs.2018.05.197
Liu, X., Li, B., Shen, D., Cao, J., & Mao, B. (2017). Analysis of Grain Storage Loss Based on Decision Tree Algorithm. Procedia Computer Science, 122, 130–137. https://doi.org/10.1016/j.procs.2017.11.351 DOI: https://doi.org/10.1016/j.procs.2017.11.351
Moodley, J., Walter, F., Scott, S., & Mwaka, A. (2018). Towards timely diagnosis of symptomatic breast and cervical cancer in South Africa. South African Medical Journal, 108(10), 803–804. https://doi.org/10.7196/SAMJ.2018.v108i10.13478 DOI: https://doi.org/10.7196/SAMJ.2018.v108i10.13478
Mushtaq, Z., Yaqub, A., Hassan, A., & Su, S. F. (2019). Performance Analysis of Supervised Classifiers Using PCA Based Techniques on Breast Cancer. 2019 International Conference on Engineering and Emerging Technologies (ICEET) (pp. 1–6). IEEE. https://doi.org/10.1109/CEET1.2019.8711868 DOI: https://doi.org/10.1109/CEET1.2019.8711868
Patsadu, O., Tangchitwilaikun, P., & Lowsuwankul, S. (2021). Liver Cancer Patient Classification on a Multiple-Stage using Hybrid Classification Methods. Walailak Journal of Science and Technology, 18(10). https://doi.org/10.48048/wjst.2021.9169 DOI: https://doi.org/10.48048/wjst.2021.9169
Santos-Pereira, J., Gruenwald, L., & Bernardino, J. (2021). Top data mining tools for the healthcare industry. Journal of King Saud University – Computer and Information Sciences, in press. https://doi.org/https://doi.org/10.1016/j.jksuci.2021.06.002 DOI: https://doi.org/10.1016/j.jksuci.2021.06.002
Senturk, Z. K., & Kara, R. (2014). Breast Cancer Diagnosis Via Data Mining: Performance Analysis of Seven Different algorithms. Computer Science & Engineering: An International Journal (CSEIJ), 4(1), 35–46. https://doi.org/10.5121/cseij.2014.4104 DOI: https://doi.org/10.5121/cseij.2014.4104
Shenouda, E. A. M. A. (2006). A Quantitative Comparison of Different MLP Activation Functions in Classification. In: J. Wang, Z. Yi, J. M. Zurada, B. L. Lu & H. Yin (Eds.), Advances in Neural Networks. Lecture Notes in Computer Science (vol. 3971). Springer. https://doi.org/10.1007/11759966_125 DOI: https://doi.org/10.1007/11759966_125
Tang, J., Alelyani, S., & Liu, H. (2014). Feature selection for classification: A review. In Data classification: Algorithms and applications (chapter 2). Chapman and Hall/CRC. https://doi.org/10.1201/b17320 DOI: https://doi.org/10.1201/b17320
Vijayalakshmi, S., & Priyadarshini, J. (2017). Breast Cancer Classification using RBF and BPN Neural Networks. International Journal of Applied Engineering Research, 12(15), 4775–4781.
Wahhab, H. T. A. (2015). Classification of acute leukemia using image processing and machine learning techniques. University of Malaya.
WBCD. (1995). Retrieved January 20, 2021 from https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original).
Wu, J., Zhuang, Q., & Tan, Y. (2020). Auxiliary Medical Decision System for Prostate Cancer Based on Ensemble Method. Computational and Mathematical Methods in Medicine, 2020, 6509596. https://doi.org/10.1155/2020/6509596 DOI: https://doi.org/10.1155/2020/6509596
Yi, L., & Yi, W. (2017). Decision Tree Model in the Diagnosis of Breast Cancer. In 2017 International Conference on Computer Technology, Electronics and Communication (ICCTEC) (pp. 176–179). IEEE. https://doi.org/10.1109/ICCTEC.2017.00046 DOI: https://doi.org/10.1109/ICCTEC.2017.00046
Zarei, M., Ansari, H., Keshavarz, P., & Zerafat, M. (2020). Prediction of pool boiling heat transfer coefficient for various nano-refrigerants utilizing artificial neural networks. Journal of Thermal Analysis and Calorimetry, 139(6), 3757–3768. DOI: https://doi.org/10.1007/s10973-019-08746-z
Article Details
Abstract views: 648
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
