RGB-D FACE RECOGNITION USING LBP-DCT ALGORITHM

Sunil Kumar B L

blsuny@gmail.com
Canara Engineering College (India)

Sharmila Kumari M


PA College of Engineering (India)

Abstract

Face recognition is one of the applications in image processing that recognizes or checks an individual's identity. 2D images are used to identify the face, but the problem is that this kind of image is very sensitive to changes in lighting and various angles of view. The images captured by 3D camera and stereo camera can also be used for recognition, but fairly long processing times is needed. RGB-D images that Kinect produces are used as a new alternative approach to 3D images. Such cameras cost less and can be used in any situation and any environment. This paper shows the face recognition algorithms’ performance using RGB-D images. These algorithms calculate the descriptor which uses RGB and Depth map faces based on local binary pattern. Those images are also tested for the fusion of LBP and DCT methods. The fusion of LBP and DCT approach produces a recognition rate of 97.5% during the experiment.


Keywords:

RGB-D, Kinect, Local Binary Pattern, Pattern Recognition, Feature Extraction, Histogram, Face Recognition

Abebe, H. B., & Hwang, C. L. (2019). RGB-D face recognition using LBP with suitable feature dimension of depth image. IET Cyber-Physical Systems: Theory & Applications, 4(3), 189–197. https://doi.org/10.1049/ietcps.2018.5045
DOI: https://doi.org/10.1049/iet-cps.2018.5045   Google Scholar

Chen, P. Z., & Chen, S. L. (2010). A new face recognition algorithm based on dct and lbp. In Quantitative Logic and Soft Computing 2010 (pp. 811–818). Springer. https://doi.org/10.1007/978-3-642-15660-1_82
DOI: https://doi.org/10.1007/978-3-642-15660-1_82   Google Scholar

Chowdhury, A., & Vatsa, M. (2016). RGB-D face recognition in surveillance videos (Doctoral dissertation). Retrieved from https://repository.iiitd.edu.in/jspui/handle/123456789/440
  Google Scholar

Cruz, L., Lucio, D., & Velho, L. (2012). Kinect and rgbd images: Challenges and applications. In 2012 25th SIBGRAPI conference on graphics, patterns and images tutorials(pp. 36–49). IEEE. https://doi.org/10.1109/SIBGRAPIT.2012.13
DOI: https://doi.org/10.1109/SIBGRAPI-T.2012.13   Google Scholar

Goswami, G., Vatsa, M., & Singh, R. (2014). RGB-D face recognition with texture and attribute features. IEEE Transactions on Information Forensics and Security, 9(10), 1629–1640. https://doi.org/10.1109/TIFS.2014.2343913
DOI: https://doi.org/10.1109/TIFS.2014.2343913   Google Scholar

Han, J., Shao, L., Xu, D., & Shotton, J. (2013). Enhanced computer vision with microsoft kinect sensor: A review. IEEE transactions on cybernetics, 43(5), 1318–1334. https://doi.org/10.1109/TCYB.2013.2265378
DOI: https://doi.org/10.1109/TCYB.2013.2265378   Google Scholar

Hg, R. I., Jasek, P., Rofidal, C., Nasrollahi, K., Moeslund, T. B., & Tranchet, G. (2012). An rgb-d database using microsoft's kinect for windows for face detection. In 2012 Eighth International Conference on Signal Image Technology and Internet Based Systems (pp. 42–46). IEEE. https://doi.org/10.1109/SITIS.2012.17
DOI: https://doi.org/10.1109/SITIS.2012.17   Google Scholar

Hsu, G. S. J., Liu, Y. L., Peng, H. C., & Wu, P. X. (2014). RGB-D-based face reconstruction and recognition. IEEE Transactions on Information Forensics and Security, 9(12), 2110–2118. https://doi.org/10.1109/TIFS.2014.2361028
DOI: https://doi.org/10.1109/TIFS.2014.2361028   Google Scholar

Huynh, T., Min, R., & Dugelay, J. L. (2012). An efficient LBP-based descriptor for facial depth images applied to gender recognition using RGB-D face data. In Asian Conference on Computer Vision (pp. 133–145). Springer. https://doi.org/10.1007/978-3-642-37410-4_12
DOI: https://doi.org/10.1007/978-3-642-37410-4_12   Google Scholar

Lin, D., Fidler, S., & Urtasun, R. (2013). Holistic scene understanding for 3d object detection with rgbd cameras. In Proceedings of the IEEE international conference on computer vision (pp. 1417–1424). IEEE. https://doi.org/10.1109/ICCV.2013.179
DOI: https://doi.org/10.1109/ICCV.2013.179   Google Scholar

Min, R., Kose, N., & Dugelay, J. L. (2014). Kinectfacedb: A kinect database for face recognition. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 44(11), 1534–1548. https://doi.org/10.1109/TSMC.2014.2331215
DOI: https://doi.org/10.1109/TSMC.2014.2331215   Google Scholar

Shermina, J. (2011). Illumination invariant face recognition using discrete cosine transform and principal component analysis. In 2011 International Conference on Emerging Trends in Electrical and Computer Technology (pp. 826–830). IEEE. https://doi.org/10.1109/ICETECT.2011.5760233
DOI: https://doi.org/10.1109/ICETECT.2011.5760233   Google Scholar

Silberman, N., Hoiem, D., Kohli, P., & Fergus, R. (2012). Indoor segmentation and support inference from rgbd images. In European conference on computer vision (pp. 746-760). Springer. https://doi.org/10.1007/978-3-642-33715-4_54
DOI: https://doi.org/10.1007/978-3-642-33715-4_54   Google Scholar

Song, K., Yan, Y., Zhao, Y., & Liu, C. (2015). Adjacent evaluation of local binary pattern for texture classification. Journal of Visual Communication and Image Representation, 33, 323–339. https://doi.org/10.1016/j.jvcir.2015.09.016
DOI: https://doi.org/10.1016/j.jvcir.2015.09.016   Google Scholar

Wang, J., Liu, Z., Chorowski, J., Chen, Z., & Wu, Y. (2012). Robust 3d action recognition with random occupancy patterns. In European Conference on Computer Vision (pp. 872–885). Springer. https://dl.acm.org/doi/10.5555/2964398.2964463
DOI: https://doi.org/10.1007/978-3-642-33709-3_62   Google Scholar

Yu, W., Gan, L., Yang, S., Ding, Y., Jiang, P., Wang, J., & Li, S. (2014). An improved LBP algorithm for texture and face classification. Signal, Image and Video Processing, 8(1), 155–161. https://doi.org/10.1007/s11760-014-0652-5
DOI: https://doi.org/10.1007/s11760-014-0652-5   Google Scholar

Zhao, W., Chellappa, R., Phillips, P. J., & Rosenfeld, A. (2003). Face recognition: A literature survey. ACM computing surveys (CSUR), 35(4), 399–458. https://doi.org/10.1145/954339.954342
DOI: https://doi.org/10.1145/954339.954342   Google Scholar

Zohra, F. T., Rahman, M. W., & Gavrilova, M. (2016). Occlusion detection and localization from Kinect depth images. In 2016 International Conference on Cyberworlds (CW) (pp. 189–196). IEEE. https://doi.org/10.1109/CW.2016.40
DOI: https://doi.org/10.1109/CW.2016.40   Google Scholar

Download


Published
2021-09-30

Cited by

B L, S. K., & M, S. K. (2021). RGB-D FACE RECOGNITION USING LBP-DCT ALGORITHM. Applied Computer Science, 17(3), 73–81. https://doi.org/10.23743/acs-2021-22

Authors

Sunil Kumar B L 
blsuny@gmail.com
Canara Engineering College India

Authors

Sharmila Kumari M 

PA College of Engineering India

Statistics

Abstract views: 197
PDF downloads: 47


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Similar Articles

<< < 1 2 3 4 5 

You may also start an advanced similarity search for this article.