REMOTE HEALTH MONITORING: FALL DETECTION
Mohanad ABDULHAMID
moh1hamid@yahoo.comAl-Hikma University, Karada Kharidge, Baghdad (Iraq)
Deng PETER
University of Nairobi, P.O. Box 30197-00100, Nairobi (Kenya)
Abstract
Falling is a serious health issue among the elderly population; it can result in critical injuries like hip fractures. Immobilization caused by injury or unconsciousness means that the victim cannot summon help themselves. With elderly who live alone, not being found for hours after a fall is quite common and drastically increases the significance of fall-induced injuries. With an aging Baby Boomer population, the incidence of falls will only rise in the next few decades. The objective of this paper is to design and create a fall detection system. The system consists of a monitoring device that links wirelessly with a laptop. The device is able to accurately distinguish between fall and non-fall.
Keywords:
remote health monitoring, fall detection, designReferences
Gong, S., Wang, Y., Zhang, M., & Wang, C. (2017). Design of remote elderly health monitoring system based on MEMS sensors. In 2017 IEEE International Conference on Information and Automation (ICIA) (pp. 494–498). Macau: IEEE.
DOI: https://doi.org/10.1109/ICInfA.2017.8078958
Google Scholar
Huang, Y., & Newman, K. (2012). Improve quality of care with remote activity and fall detection using ultrasonic sensors. In 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 5854–5857 ). San Diego, CA: IEEE.
Google Scholar
Malasinghe, L., Ramzan, N., & Dahal, K. (2019). Remote patient monitoring: a comprehensive study. Journal of Ambient Intelligence and Humanized Computing, 10(1), 57–76.
DOI: https://doi.org/10.1007/s12652-017-0598-x
Google Scholar
Saranya, M., Preethi, R., Rupasri, M., & Veena, S. (2018). A survey on health monitoring system by using IOT. International Journal for Research in Applied Science & Engineering Technology, 6(III), 778–782.
DOI: https://doi.org/10.22214/ijraset.2018.3124
Google Scholar
Authors
Deng PETERUniversity of Nairobi, P.O. Box 30197-00100, Nairobi Kenya
Statistics
Abstract views: 183PDF downloads: 25
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Most read articles by the same author(s)
- Mohanad ABDULHAMID, Otieno ODONDI, Muaayed AL-RAWI, COMPUTER VISION BASED ON RASPBERRY PI SYSTEM , Applied Computer Science: Vol. 16 No. 4 (2020)
- Mohanad ABDULHAMID, Njagi KINYUA, SOFTWARE FOR RECOGNITION OF CAR NUMBER PLATE , Applied Computer Science: Vol. 16 No. 1 (2020)
Similar Articles
- Tomasz CHMIELEWSKI, Katarzyna ZIELIŃSKA, SURVEY OF REMOTELY CONTROLLED LABORATORIES FOR RESEARCH AND EDUCATION , Applied Computer Science: Vol. 13 No. 1 (2017)
- Dariusz PLINTA, Martin KRAJČOVIČ, APPLICATION OF THE AUGMENTED REALITY IN PRODUCTION PRACTICE , Applied Computer Science: Vol. 13 No. 2 (2017)
- Lukasz DZIAK, Malgorzata PLECHAWSKA-WÓJCIK, THE USE OF UNITY 3D IN A SERIOUS GAME DEDICATED TO DEVELOPMENT OF FIREARM HANDLING SKILLS , Applied Computer Science: Vol. 13 No. 2 (2017)
- Martin KRAJČOVIČ, Patrik GRZNÁR, UTILISATION OF EVOLUTION ALGORITHM IN PRODUCTION LAYOUT DESIGN , Applied Computer Science: Vol. 13 No. 3 (2017)
- Tomasz BULZAK, Zbigniew PATER, Janusz TOMCZAK, NEW EXTRUSION PROCESS FOR PRODUCING TWIST DRILLS USING SPLIT DIES , Applied Computer Science: Vol. 13 No. 3 (2017)
- Danuta MIEDZIŃSKA, Ewelina MAŁEK, Arkadiusz POPŁAWSKI, NUMERICAL MODELLING OF RESINS USED IN STEREOLITOGRAPHY RAPID PROTOTYPING , Applied Computer Science: Vol. 15 No. 4 (2019)
- Rafał KLIZA, Karol ŚCISŁOWSKI, Ksenia SIADKOWSKA, Jacek PADYJASEK, Mirosław WENDEKER, STRENGTH ANALYSIS OF A PROTOTYPE COMPOSITE HELICOPTER ROTOR BLADE SPAR , Applied Computer Science: Vol. 18 No. 1 (2022)
- Muaayed F. AL-RAWI, Izz K. ABBOUD, Nasir A. AL-AWAD, PERFORMANCE ANALYSIS AND EVALUATION OF MASSIVE MIMO SYSTEM , Applied Computer Science: Vol. 16 No. 2 (2020)
- Marcin BADUROWICZ, DETECTION OF SOURCE CODE IN INTERNET TEXTS USING AUTOMATICALLY GENERATED MACHINE LEARNING MODELS , Applied Computer Science: Vol. 18 No. 1 (2022)
- Robert KARPIŃSKI, KNEE JOINT OSTEOARTHRITIS DIAGNOSIS BASED ON SELECTED ACOUSTIC SIGNAL DISCRIMINANTS USING MACHINE LEARNING , Applied Computer Science: Vol. 18 No. 2 (2022)
You may also start an advanced similarity search for this article.