IMPACT-BASED PIEZOELECTRIC ENERGY HARVESTING SYSTEM EXCITED FROM DIESEL ENGINE SUSPENSION
Jacek CABAN
j.caban@pollub.pl* Lublin University of Technology, Faculty of Mechanical Engineering, Nadbystrzycka 36, 20-618 Lublin (Poland)
Grzegorz LITAK
Lublin University of Technology, Faculty of Mechanical Engineering, Nadbystrzycka 36, 20-618 Lublin (Poland)
Bartłomiej AMBROŻKIEWICZ
Lublin University of Technology, Faculty of Mechanical Engineering, Nadbystrzycka 36, 20-618 Lublin (Poland)
Leszek GARDYŃSKI
* Lublin University of Technology, Faculty of Mechanical Engineering, Nadbystrzycka 36, 20-618 Lublin (Poland)
Paweł STĄCZEK
Lublin University of Technology, Faculty of Mechanical Engineering, Nadbystrzycka 36, 20-618 Lublin (Poland)
Piotr WOLSZCZAK
Lublin University of Technology, Faculty of Mechanical Engineering, Nadbystrzycka 36, 20-618 Lublin (Poland)
Abstract
Vibration energy harvesting systems are using real ambient sources of vibration excitation. In our paper, we study the dynamical voltage response of the piezoelectric vibrational energy harvesting system (PVEHs) with a mechanical resonator possessing an amplitude limiter. The PVEHs consist of the cantilever beam with a piezoelectric patch. The proposed system was subjected to the inertial excitation from the engine suspension. Impacts of the beam resonator are useful to increase of system’s frequency transition band. The suitable simulations of the resonator and piezoelectric transducer are performed by using measured signal from the engine suspension. Voltage outputs of linear (without amplitude limiter) and nonlinear harvesters were compared indicating better efficiency of the nonlinear design.
Keywords:
Vibration Energy Harvesting, Impact Analysis, Diesel engineReferences
Al-Yafeai, D., Darabseh, T., & Mourad, A.H.I. (2020). A state-of-the-art review of car suspensionbased piezoelectric energy harvesting systems. Energies, 13, 2336. https://doi.org/10.3390/en13092336
DOI: https://doi.org/10.3390/en13092336
Google Scholar
Ambrożkiewicz, B., Litak, G., & Wolszczak, P. (2020). Modelling of electromagnetic energy harvester with rotational pendulum using mechanical vibrations to scavenge electrical energy. Applied Sciences, 10, 671. https://doi.org/10.3390/app10020671
DOI: https://doi.org/10.3390/app10020671
Google Scholar
Askari, H., Hashemi, E., Khajepour, A., Khamesee, M.B., & Wang, Z.L. (2018). Towards self-powered sensing using nanogenerators for automotive systems. Nano Energy, 53, 1003–1019. https://doi.org/10.1016/j.nanoen.2018.09.032
DOI: https://doi.org/10.1016/j.nanoen.2018.09.032
Google Scholar
Borowiec, M., Litak, G., & Lenci, S. (2014). Noise effected energy harvesting in a beam with stopper. International Journal of Structural Stability and Dynamics, 14, 1440020. https://doi.org/10.1142/S0219455414400203
DOI: https://doi.org/10.1142/S0219455414400203
Google Scholar
Bowen, C.R., & Arafa, M.H. (2015). Energy harvesting technologies for tire pressure monitoring systems. Advanced Energy Materials, 5, 1401787. https://doi.org/10.1002/aenm.201401787
DOI: https://doi.org/10.1002/aenm.201401787
Google Scholar
Chandru, A.A., Murugan, S.S., & Keerthika, V. (2016). Design and implementation of an energy harvester for Low-Power devices from vibration of automobile engine. Advances in Intelligent Systems and Computing, 397, 1–8.
DOI: https://doi.org/10.1007/978-81-322-2671-0_1
Google Scholar
Erturk, A., Hoffmann, J., & Inman, D.J. (2009). A piezomagnetoelastic structure for broadband vibration energy harvesting. Applied Physics Letters, 94, 254102. https://doi.org/10.1063/1.3159815
DOI: https://doi.org/10.1063/1.3159815
Google Scholar
Feng, Z., Liang, M., & Chu, F. (2013). Recent advances in time-frequency analysis methods for machinery fault diagnosis: A review with application examples. Mechanical Systems and Signal Processing, 38, 165-205. https://doi.org/10.1016/j.ymssp.2013.01.017
DOI: https://doi.org/10.1016/j.ymssp.2013.01.017
Google Scholar
Figlus, T., Szafraniec, P., & Skrucany, T. (2019). Methods of measuring and processing signals during tests of the exposure of a motorcycle driver to vibration and noise. International Journal of Environmental Research and Public Health, 16, 17, 3145. https://doi.org/10.3390/ijerph16173145
DOI: https://doi.org/10.3390/ijerph16173145
Google Scholar
Gardyński, L., Caban, J., & Droździel, P. (2015). The impact of stiffness of engine suspension cushions in an all-terrain vehcile on its transverse displacement. Journal of Science of the Military Academy of Land Forces, 47, 95–102.
DOI: https://doi.org/10.5604/17318157.1179658
Google Scholar
Gatti, C.D., Ramirez, J.M., Febbo, M., & Machado, S.P. (2018). Multimodal piezoelectric device for energy harvesting from engine vibration. Journal of Mechanics of Materials and Structures, 13, 17-34. https://doi.org/10.2140/jomms.2018.13.17
DOI: https://doi.org/10.2140/jomms.2018.13.17
Google Scholar
Huang, D., Zhou, S., & Litak, G. (2019). Theoretical analysis of multi-stable energy harvesters with high order stiffness terms. Communications in Nonlinear Science and Numerical Simulation, 69, 270-286. https://doi.org/10.1016/j.cnsns.2018.09.025
DOI: https://doi.org/10.1016/j.cnsns.2018.09.025
Google Scholar
Huguet, T., Lallart, M., & Badel, A. (2019). Orbit jump in bistable energy harvesters through buckling level modification. Mechanical Systems and Signal Processing, 128, 202–215. https://doi.org/10.1016/j.ymssp.2019.03.051
DOI: https://doi.org/10.1016/j.ymssp.2019.03.051
Google Scholar
Jung, H.J., Song, Y., Hong, S.K., Yang, C.H., Hwang, S.J., Jeong, S.Y., & Sung, T.H. (2015). Design and optimization of piezoelectric impact-based micro wind energy harvester for wireless sensor network. Sensors and Actuators, A 222, 314–321. https://doi.org/10.1016/j.sna.2014.12.010
DOI: https://doi.org/10.1016/j.sna.2014.12.010
Google Scholar
Khalatkar, A.M., & Gupta, V.K. (2017). Piezoelectric energy harvester for low engine vibrations. Journal of Renewable and Sustainable Energy, 9, 024701. https://doi.org/10.1063/1.4979501
DOI: https://doi.org/10.1063/1.4979501
Google Scholar
Kim, G.W. (2014). Piezoelectric energy harvesting from torsional vibration in internal combustion engines. International Journal of Automotive Technology, 16, 645–651. https://doi.org/10.1007/s12239-015-0066-6
DOI: https://doi.org/10.1007/s12239-015-0066-6
Google Scholar
Koszewnik, A. (2019). Analytical modelling and experimental validation of an energy harvesting system for the smart plate with integrated piezo-harvester. Sensors, 19, 812. https://doi.org/10.3390/s19040812
DOI: https://doi.org/10.3390/s19040812
Google Scholar
Koszewnik, A. (2020). Experimental validation of equivalent circuit modelling of the piezo-stripe harvester attached to SFSF rectangular plate. Acta Mechanica et Automatica, 14, 8–15. https://doi.org/10.2478/ama-2020-0002
DOI: https://doi.org/10.2478/ama-2020-0002
Google Scholar
Litak, G, Friswell, M.I., & Adhikari, S. (2010) Magnetopiezoelastic energy harvesting driven by random excitations. Applied Physics Letters, 96, 214103. https://doi.org/10.1063/1.3436553
DOI: https://doi.org/10.1063/1.3436553
Google Scholar
Łukjanow, S., & Zieliński, W. (2016). Examination and assessment of electric vehicles’ operational safety. The Archives of Automotive Engineering – Archiwum Motoryzacji, 74, 4, 59–82. https://doi.org/10.14669/AM.VOL74.ART5
DOI: https://doi.org/10.14669/AM.VOL74.ART5
Google Scholar
Matsuzaki, R., & Todoroki, A. (2008). Wireless Monitoring of Automobile Tires for Intelligent Tires. Sensors, 8, 8123-8138. https://doi.org/10.3390/s8128123
DOI: https://doi.org/10.3390/s8128123
Google Scholar
Mieczkowski, G., Borawski, A., & Szpica, D. (2019). Static electromechanical characteristic of threelayer circular piezoelectric transducer. Sensors, 20, 222. https://doi.org/10.3390/s20010222
DOI: https://doi.org/10.3390/s20010222
Google Scholar
Šarkan, B., Gnap, J., & Kiktová, M. (2019). The importance of hybrid vehicles in urban traffic in terms of environmental impact. The Archives of Automotive Engineering – Archiwum Motoryzacji, 85, 3, 115–122. https://doi.org/10.14669/AM.VOL85.ART8
DOI: https://doi.org/10.14669/AM.VOL85.ART8
Google Scholar
Skrucany, T., Kendra, M., Stopka, O., Milojevic, S., Figlus, T., & Csiszar, C. (2019). Impact of the electric mobility implementation on the Greenhouse Gases production in central European Countries. Sustainability, 11(18), 4948. https://doi.org/10.3390/su11184948
DOI: https://doi.org/10.3390/su11184948
Google Scholar
Smutny, J., Nohal, V., Vukusicova, D., & Seelmann, H. (2018). Vibration analysis by the WignerVille transformation method. Communications – Scientific Letters of the University of Zilina, 20, 4, 24–28.
DOI: https://doi.org/10.26552/com.C.2018.4.24-28
Google Scholar
Taghizadeh-Alisaraei, A., Ghobadian, B., Tavakoli-Hashjin, T., & Mohtasebi, S.S. (2012). Vibration analysis of a diesel engine using biodiesel and petrodiesel fuel blends. Fuel, 102, 414–422.
DOI: https://doi.org/10.1016/j.fuel.2012.06.109
Google Scholar
Tan, Y., Dong, Y., & Wang, X. (2017). Review of MEMS electromagnetic vibration energy harvester. Journal of Microelectromechanical Systems, 26, 1–16.
DOI: https://doi.org/10.1109/JMEMS.2016.2611677
Google Scholar
Vijayan, K., Friswell, M.I., Khodaparast, H.H., & Adhikari, S. (2015). Non-linear energy harvesting from coupled impacting beams. International Journal of Mechanical Sciences, 96-97, 101-109. https://doi.org/10.1016/j.ijmecsci.2015.03.001
DOI: https://doi.org/10.1016/j.ijmecsci.2015.03.001
Google Scholar
Xie, X., & Wang, Q. (2015). A mathematical model for piezoelectric ring energy harvesting technology from vehicle tires. International Journal of Engineering Science, 94, 113–127. https://doi.org/10.1016/j.ijengsci.2015.05.004
DOI: https://doi.org/10.1016/j.ijengsci.2015.05.004
Google Scholar
Zhang, Y. (2014). Piezoelectric based energy harvesting on low frequency vibrations of civil infrastructures. LSU Doctoral Dissertations, 1342.
Google Scholar
Zhang, Y., Wang, T., Luo, A., Yushen, H., Li, X., & Wang, F. (2018). Micro electrostatic energy harvester with both broad bandwidth and high normalized power density. Applied Energy, 212, 362–371. https://doi.org/10.1016/j.apenergy.2017.12.053
DOI: https://doi.org/10.1016/j.apenergy.2017.12.053
Google Scholar
Zhang, Y., Zheng, R., Shimono, K., Kaizuka, T., & Nakano, K. (2016). Effectiveness testing of a piezoelectric energy harvester for an automobile wheel using stochastic resonance. Sensors, 16(10), 1727. https://doi.org/10.3390/s16101727
DOI: https://doi.org/10.3390/s16101727
Google Scholar
Zhao, L., & Yang, Y. (2018). An impact-based broadband aeroelastic energy harvester for concurrent wind and base vibration energy harvesting. Applied Energy, 212, 233–243. https://doi.org/10.1016/j.apenergy.2017.12.042
DOI: https://doi.org/10.1016/j.apenergy.2017.12.042
Google Scholar
Zhu, B., Han, J., & Zhao, J. (2019). Study of Wheel Vibration Energy Harvesting for Intelligent Tires. Lecture Notes in Electrical Engineering, 486, 971–978. https://doi.org/10.1007/978-981-10-8506-2_65
DOI: https://doi.org/10.1007/978-981-10-8506-2_65
Google Scholar
Authors
Jacek CABANj.caban@pollub.pl
* Lublin University of Technology, Faculty of Mechanical Engineering, Nadbystrzycka 36, 20-618 Lublin Poland
Authors
Grzegorz LITAKLublin University of Technology, Faculty of Mechanical Engineering, Nadbystrzycka 36, 20-618 Lublin Poland
Authors
Bartłomiej AMBROŻKIEWICZLublin University of Technology, Faculty of Mechanical Engineering, Nadbystrzycka 36, 20-618 Lublin Poland
Authors
Leszek GARDYŃSKI* Lublin University of Technology, Faculty of Mechanical Engineering, Nadbystrzycka 36, 20-618 Lublin Poland
Authors
Paweł STĄCZEKLublin University of Technology, Faculty of Mechanical Engineering, Nadbystrzycka 36, 20-618 Lublin Poland
Authors
Piotr WOLSZCZAKLublin University of Technology, Faculty of Mechanical Engineering, Nadbystrzycka 36, 20-618 Lublin Poland
Statistics
Abstract views: 155PDF downloads: 32
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Most read articles by the same author(s)
- Jakub ANCZARSKI, Adrian BOCHEN, MArcin GŁĄB, Mikolaj JACHOWICZ, Jacek CABAN, Radosław CECHOWICZ, A METHOD OF VERIFYING THE ROBOT'S TRAJECTORY FOR GOALS WITH A SHARED WORKSPACE , Applied Computer Science: Vol. 18 No. 1 (2022)
Similar Articles
- Paweł MAGRYTA, Grzegorz BARAŃSKI, SIMULATION OF TORQUE VARIATIONS IN A DIESEL ENGINE FOR LIGHT HELICOPTERS USING PI CONTROL ALGORITHMS , Applied Computer Science: Vol. 20 No. 3 (2024)
- Paweł KARPIŃSKI, THE INFLUENCE OF THE INJECTION TIMING ON THE PERFORMANCE OF TWO-STROKE OPPOSED-PISTON DIESEL ENGINE , Applied Computer Science: Vol. 14 No. 2 (2018)
- Konrad PIETRYKOWSKI, Tytus TULWIN, THE NONUNIFORMITY OF THE PISTON MOTION OF THE RADIAL ENGINE , Applied Computer Science: Vol. 13 No. 2 (2017)
- Kamil JONAK, Paweł KRUKOW, MATCHING PURSUIT ALGORITHM IN ASSESSING THE STATE OF ROLLING BEARINGS , Applied Computer Science: Vol. 13 No. 2 (2017)
- Marian JANCZAREK, COMPUTER MODELLING OF THERMAL TECHNICAL SPACESS IN ASPECT OF HEAT TRANSFER THROUGH THE WALLS , Applied Computer Science: Vol. 14 No. 3 (2018)
- Łukasz SEMKŁO, Łukasz GIERZ, NUMERICAL AND EXPERIMENTAL ANALYSIS OF A CENTRIFUGAL PUMP WITH DIFFERENT ROTOR GEOMETRIES , Applied Computer Science: Vol. 18 No. 4 (2022)
- Łukasz GRABOWSKI, Arkadiusz DROZD, Mateusz KARABELA, Wojciech KARPIUK, AERODYNAMIC AND ROLLING RESISTANCES OF HEAVY DUTY VEHICLE. SIMULATION OF ENERGY CONSUMPTION , Applied Computer Science: Vol. 20 No. 3 (2024)
- Firas ALMUKHTAR, Nawzad MAHMOODD, Shahab KAREEM, SEARCH ENGINE OPTIMIZATION: A REVIEW , Applied Computer Science: Vol. 17 No. 1 (2021)
- Muaayed F. AL-RAWI, CONVENTIONAL ENERGY EFFICIENT ROUTING PROTOCOLS IN WIRELESS SENSOR NETWORKS , Applied Computer Science: Vol. 16 No. 3 (2020)
- Paweł PIEŚKO, Magdalena ZAWADA-MICHAŁOWSKA, USEFULNESS OF MODAL ANALYSIS FOR EVALUATION OF MILLING PROCESS STABILITY , Applied Computer Science: Vol. 13 No. 1 (2017)
You may also start an advanced similarity search for this article.