IMPACT-BASED PIEZOELECTRIC ENERGY HARVESTING SYSTEM EXCITED FROM DIESEL ENGINE SUSPENSION

Jacek CABAN

j.caban@pollub.pl
* Lublin University of Technology, Faculty of Mechanical Engineering, Nadbystrzycka 36, 20-618 Lublin (Poland)

Grzegorz LITAK


Lublin University of Technology, Faculty of Mechanical Engineering, Nadbystrzycka 36, 20-618 Lublin (Poland)

Bartłomiej AMBROŻKIEWICZ


Lublin University of Technology, Faculty of Mechanical Engineering, Nadbystrzycka 36, 20-618 Lublin (Poland)

Leszek GARDYŃSKI


* Lublin University of Technology, Faculty of Mechanical Engineering, Nadbystrzycka 36, 20-618 Lublin (Poland)

Paweł STĄCZEK


Lublin University of Technology, Faculty of Mechanical Engineering, Nadbystrzycka 36, 20-618 Lublin (Poland)

Piotr WOLSZCZAK


Lublin University of Technology, Faculty of Mechanical Engineering, Nadbystrzycka 36, 20-618 Lublin (Poland)

Abstract

Vibration energy harvesting systems are using real ambient sources of vibration excitation. In our paper, we study the dynamical voltage response of the piezoelectric vibrational energy harvesting system (PVEHs) with a mechanical resonator possessing an amplitude limiter. The PVEHs consist of the cantilever beam with a piezoelectric patch. The proposed system was subjected to the inertial excitation from the engine suspension. Impacts of the beam resonator are useful to increase of system’s frequency transition band. The suitable simulations of the resonator and piezoelectric transducer are performed by using measured signal from the engine suspension. Voltage outputs of linear (without amplitude limiter) and nonlinear harvesters were compared indicating better efficiency of the nonlinear design.


Keywords:

Vibration Energy Harvesting, Impact Analysis, Diesel engine

Al-Yafeai, D., Darabseh, T., & Mourad, A.H.I. (2020). A state-of-the-art review of car suspensionbased piezoelectric energy harvesting systems. Energies, 13, 2336. https://doi.org/10.3390/en13092336
DOI: https://doi.org/10.3390/en13092336   Google Scholar

Ambrożkiewicz, B., Litak, G., & Wolszczak, P. (2020). Modelling of electromagnetic energy harvester with rotational pendulum using mechanical vibrations to scavenge electrical energy. Applied Sciences, 10, 671. https://doi.org/10.3390/app10020671
DOI: https://doi.org/10.3390/app10020671   Google Scholar

Askari, H., Hashemi, E., Khajepour, A., Khamesee, M.B., & Wang, Z.L. (2018). Towards self-powered sensing using nanogenerators for automotive systems. Nano Energy, 53, 1003–1019. https://doi.org/10.1016/j.nanoen.2018.09.032
DOI: https://doi.org/10.1016/j.nanoen.2018.09.032   Google Scholar

Borowiec, M., Litak, G., & Lenci, S. (2014). Noise effected energy harvesting in a beam with stopper. International Journal of Structural Stability and Dynamics, 14, 1440020. https://doi.org/10.1142/S0219455414400203
DOI: https://doi.org/10.1142/S0219455414400203   Google Scholar

Bowen, C.R., & Arafa, M.H. (2015). Energy harvesting technologies for tire pressure monitoring systems. Advanced Energy Materials, 5, 1401787. https://doi.org/10.1002/aenm.201401787
DOI: https://doi.org/10.1002/aenm.201401787   Google Scholar

Chandru, A.A., Murugan, S.S., & Keerthika, V. (2016). Design and implementation of an energy harvester for Low-Power devices from vibration of automobile engine. Advances in Intelligent Systems and Computing, 397, 1–8.
DOI: https://doi.org/10.1007/978-81-322-2671-0_1   Google Scholar

Erturk, A., Hoffmann, J., & Inman, D.J. (2009). A piezomagnetoelastic structure for broadband vibration energy harvesting. Applied Physics Letters, 94, 254102. https://doi.org/10.1063/1.3159815
DOI: https://doi.org/10.1063/1.3159815   Google Scholar

Feng, Z., Liang, M., & Chu, F. (2013). Recent advances in time-frequency analysis methods for machinery fault diagnosis: A review with application examples. Mechanical Systems and Signal Processing, 38, 165-205. https://doi.org/10.1016/j.ymssp.2013.01.017
DOI: https://doi.org/10.1016/j.ymssp.2013.01.017   Google Scholar

Figlus, T., Szafraniec, P., & Skrucany, T. (2019). Methods of measuring and processing signals during tests of the exposure of a motorcycle driver to vibration and noise. International Journal of Environmental Research and Public Health, 16, 17, 3145. https://doi.org/10.3390/ijerph16173145
DOI: https://doi.org/10.3390/ijerph16173145   Google Scholar

Gardyński, L., Caban, J., & Droździel, P. (2015). The impact of stiffness of engine suspension cushions in an all-terrain vehcile on its transverse displacement. Journal of Science of the Military Academy of Land Forces, 47, 95–102.
DOI: https://doi.org/10.5604/17318157.1179658   Google Scholar

Gatti, C.D., Ramirez, J.M., Febbo, M., & Machado, S.P. (2018). Multimodal piezoelectric device for energy harvesting from engine vibration. Journal of Mechanics of Materials and Structures, 13, 17-34. https://doi.org/10.2140/jomms.2018.13.17
DOI: https://doi.org/10.2140/jomms.2018.13.17   Google Scholar

Huang, D., Zhou, S., & Litak, G. (2019). Theoretical analysis of multi-stable energy harvesters with high order stiffness terms. Communications in Nonlinear Science and Numerical Simulation, 69, 270-286. https://doi.org/10.1016/j.cnsns.2018.09.025
DOI: https://doi.org/10.1016/j.cnsns.2018.09.025   Google Scholar

Huguet, T., Lallart, M., & Badel, A. (2019). Orbit jump in bistable energy harvesters through buckling level modification. Mechanical Systems and Signal Processing, 128, 202–215. https://doi.org/10.1016/j.ymssp.2019.03.051
DOI: https://doi.org/10.1016/j.ymssp.2019.03.051   Google Scholar

Jung, H.J., Song, Y., Hong, S.K., Yang, C.H., Hwang, S.J., Jeong, S.Y., & Sung, T.H. (2015). Design and optimization of piezoelectric impact-based micro wind energy harvester for wireless sensor network. Sensors and Actuators, A 222, 314–321. https://doi.org/10.1016/j.sna.2014.12.010
DOI: https://doi.org/10.1016/j.sna.2014.12.010   Google Scholar

Khalatkar, A.M., & Gupta, V.K. (2017). Piezoelectric energy harvester for low engine vibrations. Journal of Renewable and Sustainable Energy, 9, 024701. https://doi.org/10.1063/1.4979501
DOI: https://doi.org/10.1063/1.4979501   Google Scholar

Kim, G.W. (2014). Piezoelectric energy harvesting from torsional vibration in internal combustion engines. International Journal of Automotive Technology, 16, 645–651. https://doi.org/10.1007/s12239-015-0066-6
DOI: https://doi.org/10.1007/s12239-015-0066-6   Google Scholar

Koszewnik, A. (2019). Analytical modelling and experimental validation of an energy harvesting system for the smart plate with integrated piezo-harvester. Sensors, 19, 812. https://doi.org/10.3390/s19040812
DOI: https://doi.org/10.3390/s19040812   Google Scholar

Koszewnik, A. (2020). Experimental validation of equivalent circuit modelling of the piezo-stripe harvester attached to SFSF rectangular plate. Acta Mechanica et Automatica, 14, 8–15. https://doi.org/10.2478/ama-2020-0002
DOI: https://doi.org/10.2478/ama-2020-0002   Google Scholar

Litak, G, Friswell, M.I., & Adhikari, S. (2010) Magnetopiezoelastic energy harvesting driven by random excitations. Applied Physics Letters, 96, 214103. https://doi.org/10.1063/1.3436553
DOI: https://doi.org/10.1063/1.3436553   Google Scholar

Łukjanow, S., & Zieliński, W. (2016). Examination and assessment of electric vehicles’ operational safety. The Archives of Automotive Engineering – Archiwum Motoryzacji, 74, 4, 59–82. https://doi.org/10.14669/AM.VOL74.ART5
DOI: https://doi.org/10.14669/AM.VOL74.ART5   Google Scholar

Matsuzaki, R., & Todoroki, A. (2008). Wireless Monitoring of Automobile Tires for Intelligent Tires. Sensors, 8, 8123-8138. https://doi.org/10.3390/s8128123
DOI: https://doi.org/10.3390/s8128123   Google Scholar

Mieczkowski, G., Borawski, A., & Szpica, D. (2019). Static electromechanical characteristic of threelayer circular piezoelectric transducer. Sensors, 20, 222. https://doi.org/10.3390/s20010222
DOI: https://doi.org/10.3390/s20010222   Google Scholar

Šarkan, B., Gnap, J., & Kiktová, M. (2019). The importance of hybrid vehicles in urban traffic in terms of environmental impact. The Archives of Automotive Engineering – Archiwum Motoryzacji, 85, 3, 115–122. https://doi.org/10.14669/AM.VOL85.ART8
DOI: https://doi.org/10.14669/AM.VOL85.ART8   Google Scholar

Skrucany, T., Kendra, M., Stopka, O., Milojevic, S., Figlus, T., & Csiszar, C. (2019). Impact of the electric mobility implementation on the Greenhouse Gases production in central European Countries. Sustainability, 11(18), 4948. https://doi.org/10.3390/su11184948
DOI: https://doi.org/10.3390/su11184948   Google Scholar

Smutny, J., Nohal, V., Vukusicova, D., & Seelmann, H. (2018). Vibration analysis by the WignerVille transformation method. Communications – Scientific Letters of the University of Zilina, 20, 4, 24–28.
DOI: https://doi.org/10.26552/com.C.2018.4.24-28   Google Scholar

Taghizadeh-Alisaraei, A., Ghobadian, B., Tavakoli-Hashjin, T., & Mohtasebi, S.S. (2012). Vibration analysis of a diesel engine using biodiesel and petrodiesel fuel blends. Fuel, 102, 414–422.
DOI: https://doi.org/10.1016/j.fuel.2012.06.109   Google Scholar

Tan, Y., Dong, Y., & Wang, X. (2017). Review of MEMS electromagnetic vibration energy harvester. Journal of Microelectromechanical Systems, 26, 1–16.
DOI: https://doi.org/10.1109/JMEMS.2016.2611677   Google Scholar

Vijayan, K., Friswell, M.I., Khodaparast, H.H., & Adhikari, S. (2015). Non-linear energy harvesting from coupled impacting beams. International Journal of Mechanical Sciences, 96-97, 101-109. https://doi.org/10.1016/j.ijmecsci.2015.03.001
DOI: https://doi.org/10.1016/j.ijmecsci.2015.03.001   Google Scholar

Xie, X., & Wang, Q. (2015). A mathematical model for piezoelectric ring energy harvesting technology from vehicle tires. International Journal of Engineering Science, 94, 113–127. https://doi.org/10.1016/j.ijengsci.2015.05.004
DOI: https://doi.org/10.1016/j.ijengsci.2015.05.004   Google Scholar

Zhang, Y. (2014). Piezoelectric based energy harvesting on low frequency vibrations of civil infrastructures. LSU Doctoral Dissertations, 1342.
  Google Scholar

Zhang, Y., Wang, T., Luo, A., Yushen, H., Li, X., & Wang, F. (2018). Micro electrostatic energy harvester with both broad bandwidth and high normalized power density. Applied Energy, 212, 362–371. https://doi.org/10.1016/j.apenergy.2017.12.053
DOI: https://doi.org/10.1016/j.apenergy.2017.12.053   Google Scholar

Zhang, Y., Zheng, R., Shimono, K., Kaizuka, T., & Nakano, K. (2016). Effectiveness testing of a piezoelectric energy harvester for an automobile wheel using stochastic resonance. Sensors, 16(10), 1727. https://doi.org/10.3390/s16101727
DOI: https://doi.org/10.3390/s16101727   Google Scholar

Zhao, L., & Yang, Y. (2018). An impact-based broadband aeroelastic energy harvester for concurrent wind and base vibration energy harvesting. Applied Energy, 212, 233–243. https://doi.org/10.1016/j.apenergy.2017.12.042
DOI: https://doi.org/10.1016/j.apenergy.2017.12.042   Google Scholar

Zhu, B., Han, J., & Zhao, J. (2019). Study of Wheel Vibration Energy Harvesting for Intelligent Tires. Lecture Notes in Electrical Engineering, 486, 971–978. https://doi.org/10.1007/978-981-10-8506-2_65
DOI: https://doi.org/10.1007/978-981-10-8506-2_65   Google Scholar

Download


Published
2020-09-30

Cited by

CABAN, J., LITAK, G., AMBROŻKIEWICZ, B., GARDYŃSKI, L. ., STĄCZEK, P. ., & WOLSZCZAK, P. (2020). IMPACT-BASED PIEZOELECTRIC ENERGY HARVESTING SYSTEM EXCITED FROM DIESEL ENGINE SUSPENSION. Applied Computer Science, 16(3), 16–29. https://doi.org/10.23743/acs-2020-18

Authors

Jacek CABAN 
j.caban@pollub.pl
* Lublin University of Technology, Faculty of Mechanical Engineering, Nadbystrzycka 36, 20-618 Lublin Poland

Authors

Grzegorz LITAK 

Lublin University of Technology, Faculty of Mechanical Engineering, Nadbystrzycka 36, 20-618 Lublin Poland

Authors

Bartłomiej AMBROŻKIEWICZ 

Lublin University of Technology, Faculty of Mechanical Engineering, Nadbystrzycka 36, 20-618 Lublin Poland

Authors

Leszek GARDYŃSKI 

* Lublin University of Technology, Faculty of Mechanical Engineering, Nadbystrzycka 36, 20-618 Lublin Poland

Authors

Paweł STĄCZEK 

Lublin University of Technology, Faculty of Mechanical Engineering, Nadbystrzycka 36, 20-618 Lublin Poland

Authors

Piotr WOLSZCZAK 

Lublin University of Technology, Faculty of Mechanical Engineering, Nadbystrzycka 36, 20-618 Lublin Poland

Statistics

Abstract views: 179
PDF downloads: 34


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.