REMOTE HEALTH MONITORING: FALL DETECTION
Mohanad ABDULHAMID
moh1hamid@yahoo.comAl-Hikma University, Karada Kharidge, Baghdad (Iraq)
Deng PETER
University of Nairobi, P.O. Box 30197-00100, Nairobi (Kenya)
Abstract
Falling is a serious health issue among the elderly population; it can result in critical injuries like hip fractures. Immobilization caused by injury or unconsciousness means that the victim cannot summon help themselves. With elderly who live alone, not being found for hours after a fall is quite common and drastically increases the significance of fall-induced injuries. With an aging Baby Boomer population, the incidence of falls will only rise in the next few decades. The objective of this paper is to design and create a fall detection system. The system consists of a monitoring device that links wirelessly with a laptop. The device is able to accurately distinguish between fall and non-fall.
Keywords:
remote health monitoring, fall detection, designReferences
Gong, S., Wang, Y., Zhang, M., & Wang, C. (2017). Design of remote elderly health monitoring system based on MEMS sensors. In 2017 IEEE International Conference on Information and Automation (ICIA) (pp. 494–498). Macau: IEEE.
DOI: https://doi.org/10.1109/ICInfA.2017.8078958
Google Scholar
Huang, Y., & Newman, K. (2012). Improve quality of care with remote activity and fall detection using ultrasonic sensors. In 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 5854–5857 ). San Diego, CA: IEEE.
Google Scholar
Malasinghe, L., Ramzan, N., & Dahal, K. (2019). Remote patient monitoring: a comprehensive study. Journal of Ambient Intelligence and Humanized Computing, 10(1), 57–76.
DOI: https://doi.org/10.1007/s12652-017-0598-x
Google Scholar
Saranya, M., Preethi, R., Rupasri, M., & Veena, S. (2018). A survey on health monitoring system by using IOT. International Journal for Research in Applied Science & Engineering Technology, 6(III), 778–782.
DOI: https://doi.org/10.22214/ijraset.2018.3124
Google Scholar
Authors
Deng PETERUniversity of Nairobi, P.O. Box 30197-00100, Nairobi Kenya
Statistics
Abstract views: 183PDF downloads: 25
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Most read articles by the same author(s)
- Mohanad ABDULHAMID, Otieno ODONDI, Muaayed AL-RAWI, COMPUTER VISION BASED ON RASPBERRY PI SYSTEM , Applied Computer Science: Vol. 16 No. 4 (2020)
- Mohanad ABDULHAMID, Njagi KINYUA, SOFTWARE FOR RECOGNITION OF CAR NUMBER PLATE , Applied Computer Science: Vol. 16 No. 1 (2020)
Similar Articles
- Katarzyna KUREK, Maria Skublewska-Paszkowska, Mariusz DZIENKOWSKI, Paweł POWROZNIK, THE IMPACT OF APPLYING UNIVERSAL DESIGN PRINCIPLES ON THE USABILITY OF ONLINE ACCOMMODATION BOOKING WEBSITES , Applied Computer Science: Vol. 20 No. 1 (2024)
- Shahil SHARMA, Rajnesh LAL, Bimal KUMAR, DEVELOPING MACHINE LEARNING APPLICATION FOR EARLY CARDIOVASCULAR DISEASE (CVD) RISK DETECTION IN FIJI: A DESIGN SCIENCE APPROACH , Applied Computer Science: Vol. 20 No. 3 (2024)
- Toufik GHRIB, Yacine KHALDI, Purnendu Shekhar PANDEY, Yusef Awad ABUSAL, ADVANCED FRAUD DETECTION IN CARD-BASED FINANCIAL SYSTEMS USING A BIDIRECTIONAL LSTM-GRU ENSEMBLE MODEL , Applied Computer Science: Vol. 20 No. 3 (2024)
- Anusha NALLAPAREDDY, DETECTION AND CLASSIFICATION OF VEGETATION AREAS FROM RED AND NEAR INFRARED BANDS OF LANDSAT-8 OPTICAL SATELLITE IMAGE , Applied Computer Science: Vol. 18 No. 1 (2022)
- Błażej BADZIO, Agnieszka BODZIAK, Bartłomiej BRODAWKA, Karol BUCHAJCZUK, Maria SKUBLEWSKA-PASZKOWSKA, Mariusz DZIEŃKOWSKI, Paweł POWROŹNIK, ANALYSIS OF THE USABILITY AND ACCESSIBILITY OF WEBSITES IN VIEW OF THEIR UNIVERSAL DESIGN PRINCIPLES , Applied Computer Science: Vol. 18 No. 3 (2022)
- Anna MACHROWSKA, Robert KARPIŃSKI, Marcin MACIEJEWSKI, Józef JONAK, Przemysław KRAKOWSKI, APPLICATION OF EEMD-DFA ALGORITHMS AND ANN CLASSIFICATION FOR DETECTION OF KNEE OSTEOARTHRITIS USING VIBROARTHROGRAPHY , Applied Computer Science: Vol. 20 No. 2 (2024)
- Jarosław ZUBRZYCKI, Antoni ŚWIĆ, Łukasz SOBASZEK, Juraj KOVAC, Ruzena KRALIKOVA, Robert JENCIK, Natalia SMIDOVA, Polyxeni ARAPI, Peter DULENCIN, Jozef HOMZA, CYBER-PHYSICAL SYSTEMS TECHNOLOGIES AS A KEY FACTOR IN THE PROCESS OF INDUSTRY 4.0 AND SMART MANUFACTURING DEVELOPMENT , Applied Computer Science: Vol. 17 No. 4 (2021)
- Elmehdi BENMALEK, Jamal EL MHAMDI, Abdelilah JILBAB, Atman JBARI, A COUGH-BASED COVID-19 DETECTION SYSTEM USING PCA AND MACHINE LEARNING CLASSIFIERS , Applied Computer Science: Vol. 18 No. 4 (2022)
- Ziadeddine MAKHLOUF, Abdallah MERAOUMIA , Laimeche LAKHDAR, Mohamed Yassine HAOUAM , ENHANCING MEDICAL DATA SECURITY IN E-HEALTH SYSTEMS USING BIOMETRIC-BASED WATERMARKING , Applied Computer Science: Vol. 20 No. 1 (2024)
- Lubna RIYAZ, Muheet Ahmed BUTT, Majid ZAMAN, IMPROVING CORONARY HEART DISEASE PREDICTION BY OUTLIER ELIMINATION , Applied Computer Science: Vol. 18 No. 1 (2022)
You may also start an advanced similarity search for this article.