Machine learning evidence towards eradication of malaria burden: A scoping review

Idara JAMES

idara.james@physci.uniben.edu
Akwa Ibom State University (Nigeria)
https://orcid.org/0000-0001-5497-7616

Veronica OSUBOR


University of Benin (Nigeria)

Abstract

Recent advancements have shown that shallow and deep learning models achieve impressive performance accuracies of over 97% and 98%, respectively, in providing precise evidence for malaria control and diagnosis. This effectiveness highlights the importance of these models in enhancing our understanding of malaria management, which includes critical areas such as malaria control, diagnosis and the economic evaluation of the malaria burden. By leveraging predictive systems and models, significant opportunities for eradicating malaria, empowering informed decision-making and facilitating the development of effective policies could be established. However, as the global malaria burden is approximated at 95%, there is a pressing need for its eradication to facilitate the achievement of SDG targets related to good health and well-being. This paper presents a scoping review covering the years 2018 to 2024, utilizing the PRISMA-ScR protocol, with articles retrieved from three scholarly databases: Science Direct (9%), PubMed (41%), and Google Scholar (50%). After applying the exclusion and inclusion criteria, a final list of 61 articles was extracted for review. The results reveal a decline in research on shallow machine learning techniques for malaria control, while a steady increase in deep learning approaches has been noted, particularly as the volume and dimensionality of data continue to grow. In conclusion, there is a clear need to utilize machine learning algorithms through real-time data collection, model development, and deployment for evidence-based recommendations in effective malaria control and diagnosis. Future research directions should focus on standardized methodologies to effectively investigate both shallow and deep learning models.


Keywords:

Predictive systems, malaria burden, control, diagnosis, evidence-based recommendation

Adegbite, G. (2023). E_Apriori: An efficient machine learning algorithm for the control of malaria. https://doi.org/10.20944/preprints202308.1388.v1
  Google Scholar

Affiah, N., Fadoju, S., James, I., James, N., Uzoma, C., Opada, E., & Jasini, J. (2022). Economic impact of malaria treatment on resource-constrained households in Akwa Ibom: A case study on selected local government areas. World Journal of Public Health, 7(2), 39-45.
  Google Scholar

Afolabi, H. A., Akinde, S. B., Sule, W. F., Ojurongbe, O., & Adegoke, N. A. (2023). Prediction of malaria outcomes using patients’ demographical, environmental and clinical features. https://doi.org/10.21203/rs.3.rs-2682969/v1
  Google Scholar

Ahmad, H. I., Prasad, R., Sharma, B. K., Madaki, A. Y., & Shuaibu, A. R. (2023). Malaria disease prediction using frequency-Based machine learning algorithms and ensembles algorithms. International Conference on Multidisciplinary Engineering and Applied Science (ICMEAS) (pp. 1-6). IEEE. https://doi.org/10.1109/ICMEAS58693.2023.10379206
  Google Scholar

Ahmed, T., Hyder, M. Z., Liaqat, I., & Scholz, M. (2019). Climatic conditions: conventional and nanotechnology-based methods for the control of mosquito vectors causing human health issues. International journal of environmental research and public health, 16(17), 3165. https://doi.org/10.3390/ijerph16173165
  Google Scholar

Akinbobola, A., & Omotosho, J. B. (2013). Predicting malaria occurrence in southwest and north central Nigeria using meteorological parameters. International journal of biometeorology, 57, 721-728. https://doi.org/10.1007/s00484-012-0599-6
  Google Scholar

Alanazi, A. (2022). Using machine learning for healthcare challenges and opportunities. Informatics in Medicine Unlocked, 30, 100924. https://doi.org/10.1016/j.imu.2022.100924
  Google Scholar

Alnussairi, M. H. D., & İbrahim, A. A. (2022). Malaria parasite detection using deep learning algorithms based on (CNNs) technique. Computers and Electrical Engineering, 103, 108316 https://doi.org/10.1016/j.compeleceng.2022.108316
  Google Scholar

Amin, I., Hassan, S., Brahim Belhaouari, S., & Hamza Azam, M. (2023). Transfer learning-based semi-supervised generative adversarial network for malaria classification. Computers, Materials & Continua, 74(3), 6335-6349. https://doi.org/10.32604/cmc.2023.033860
  Google Scholar

Anjorin, S., Okolie, E., & Yaya, S. (2023). Malaria profile and socioeconomic predictors among under-five children: an analysis of 11 sub-Saharan African countries. Malaria Journal, 22(1), 55. https://doi.org/10.1186/s12936-023-04484-8
  Google Scholar

Apeagyei, A. E., Patel, N. K., Cogswell, I., O’Rourke, K., Tsakalos, G., & Dieleman, J. (2024). Examining geographical inequalities for malaria outcomes and spending on malaria in 40 malaria-endemic countries, 2010–2020. Malaria Journal, 23, 206. https://doi.org/10.1186/s12936-024-05028-4
  Google Scholar

Atoyebi, T. O., Olanrewaju, R. F., & Blamah, N. V. (2023). Malaria incidence rate using environmental, socio-economic features and machine learning algorithm. South Eastern Journal of Research and Sustainable Development, 14(1), 25-62.
  Google Scholar

Attai, K., Amannejad, Y., Vahdat Pour, M., Obot, O., & Uzoka, F. M. (2022). A systematic review of applications of machine learning and other soft computing techniques for the diagnosis of tropical diseases. Tropical Medicine and Infectious Disease, 7(12), 398. https://doi.org/10.3390/tropicalmed7120398
  Google Scholar

Awine, T., Malm, K., Bart-Plange, C., & Silal, S. P. (2017). Towards malaria control and elimination in Ghana: challenges and decision making tools to guide planning. Global Health Action, 10(1), 1381471. https://doi.org/10.1080/16549716.2017.1381471
  Google Scholar

Awosolu, O. B., Yahaya, Z. S., Haziqah, M. T. F., Simon-Oke, I. A., & Fakunle, C. (2021). A cross-sectional study of the prevalence, density, and risk factors associated with malaria transmission in urban communities of Ibadan, Southwestern Nigeria. Heliyon, 7(1), e05975. https://doi.org/10.1016/j.heliyon.2021.e05975
  Google Scholar

Ayalew, A. M., Admass, W. S., Abuhayi, B. M., Negashe, G. S., & Bezabh, Y. A. (2024). Smart malaria classification: A novel machine learning algorithms for early malaria monitoring and detecting using IoT-based healthcare environment. Sensing and Imaging, 25, 55. https://doi.org/10.1007/s11220-024-00503-3
  Google Scholar

Ayogu, E. E., Mosanya, A. U., Onuh, J. C., Adibe, M. O., Ubaka, C. M., & Ukwe, C. V. (2021). Direct medical cost of treatment of uncomplicated malaria after the adoption of artemisinin-based combination therapy in Nigeria. Journal of Applied Pharmaceutical Science, 11(9), 029-034. https://doi.org/10.7324/JAPS.2021.110904
  Google Scholar

Babikir, A. K. O., & Thron, C. (2022). Malaria detection using machine learning. In M. Alloghani, C. Thron, & S. Subair (Eds.), Artificial Intelligence for Data Science in Theory and Practice (Vol. 1006, pp. 139–153). Springer International Publishing. https://doi.org/10.1007/978-3-030-92245-0_7
  Google Scholar

Balerdi-Sarasola, L., Fleitas, P., Bottieau, E., Genton, B., Petrone, P., Muñoz, J., & Camprubí-Ferrer, D. (2024). MALrisk: A machine-learning–based tool to predict imported malaria in returned travellers with fever. Journal of Travel Medicine, 31(8), taae054. https://doi.org/10.1093/jtm/taae054
  Google Scholar

Barracloug, P. A., Were, C. M., Mwangakala, H., Fehringer, G., Ohanya, D. O., Agola, H., & Nandi, P. (2024a). Artificial intelligence system for malaria diagnosis. International Journal of Advanced Computer Science & Applications, 15(3). https://doi.org/10.14569/IJACSA.2024.0150392
  Google Scholar

Bassey, S. E., & Izah, S. C. (2017). Some determinant factors of Malaria prevalence in Nigeria. Journal of Mosquito Research, 7(7).
  Google Scholar

Basu, S., & Sahi, P. K. (2017). Malaria: an update. The Indian Journal of Pediatrics, 84, 521-528. https://doi.org/10.1007/s12098-017-2332-2
  Google Scholar

Bent, O., Remy, S., Roberts, S., & Walcott-Bryant, A. (2018). Novel exploration techniques (NETs) for malaria policy interventions. AAAI Conference on Artificial Intelligence. https://doi.org/https://doi.org/10.1609/aaai.v32i1.11410
  Google Scholar

Bhatt, S., Weiss, D. J., Cameron, E., Bisanzio, D., Mappin, B., Dalrymple, U., Battle, K. E., Moyes, C. L., Henry, A., Eckhoff, P. A., Wenger, E. A., Briët, O., Penny, M. A., Smith, T. A., Bennett, A., Yukich, J., Eisele, T. P., Griffin, J. T., Fergus, C. A., … Gething, P. W. (2015). The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature, 526(7572), 207–211. https://doi.org/10.1038/nature15535
  Google Scholar

Bhuiyan, M., & Islam, M. S. (2023). A new ensemble learning approach to detect malaria from microscopic red blood cell images. Sensors International, 4, 100209. https://doi.org/10.1016/j.sintl.2022.100209
  Google Scholar

Bilal, H. M. (2023). Identification and classification for diagnosis of malaria disease using blood cell images. Lahore Garrison University Research Journal of Computer Science and Information Technology, 7(1), 14-28 https://doi.org/10.54692/lgurjcsit.2023.0701417
  Google Scholar

Brown, B. J., Manescu, P., Przybylski, A. A., Caccioli, F., Oyinloye, G., Elmi, M., Shaw, M. J., Pawar, V., Claveau, R., Shawe-Taylor, J., Srinivasan, M. A., Afolabi, N. K., Rees, G., Orimadegun, A. E., Ajetunmobi, W. A., Akinkunmi, F., Kowobari, O., Osinusi, K., Akinbami, F. O., … Fernandez-Reyes, D. (2020). Data-driven malaria prevalence prediction in large densely populated urban holoendemic sub-Saharan West Africa. Scientific Reports, 10(1), 15918. https://doi.org/10.1038/s41598-020-72575-6
  Google Scholar

Chaddad, A., Peng, J., Xu, J., & Bouridane, A. (2023). Survey of explainable AI techniques in healthcare. Sensors, 23(2), 634. https://doi.org/10.3390/s23020634
  Google Scholar

Chakradeo, K., Delves, M., & Titarenko, S. (2021). Malaria parasite detection using deep learning methods. International Journal of Computer and Information Engineering, 15(2), 175-182. https://doi.org/10.5281/zenodo.4569849
  Google Scholar

Chijioke-Nwauche, I., Maduka, O., Awopeju, A., Oboro, I., Paul, N., Ogoro, M., Otto, G., Kasso, T., Yaguo-Ide, L., Abam, C., & Nwauche, C. (2020). Malaria and its economic burden among pregnant women in Rivers State. Open Journal of Obstetrics and Gynecology, 10, 571-582. https://doi.org/10.4236/ojog.2020.1040051
  Google Scholar

Comert, G., Begashaw, N., & Turhan-Comert, A. (2020). Malaria outbreak detection with machine learning methods. https://doi.org/10.1101/2020.07.21.214213
  Google Scholar

Conlin, C. (2024). Using machine learning and daytime satellite imagery to estimate aid's effect on wealth: Comparing China and world bank programs in Africa. https://doi.org/diva2:1875097
  Google Scholar

Dalaba, M. A., Welaga, P., Oduro, A., Danchaka, L. L., & Matsubara, C. (2018). Cost of malaria treatment and health seeking behaviour of children under-five years in the Upper West Region of Ghana. Plos One, 13(4), e0195533. https://doi.org/10.1371/journal.pone.0195533
  Google Scholar

Degarege, A., Fennie, K., Degarege, D., Chennupati, S., & Madhivanan, P. (2019). Improving socioeconomic status may reduce the burden of malaria in sub Saharan Africa: A systematic review and meta-analysis. Plos One, 14(1), e0211205.. https://doi.org/10.1371/journal.pone.0211205
  Google Scholar

Deressa, A., Gamachu, M., Birhanu, A., Mamo Ayana, G., Raru, T. B., Negash, B., Merga, B. T., Regassa, L. D., & Ababulgu, F. A. (2023). Malaria risk perception and preventive behaviors among elementary school students, Southwest Ethiopia. Generalized structural equation model. Infection and Drug Resistance, Volume 16, 4579–4592. https://doi.org/10.2147/IDR.S415376
  Google Scholar

Dev, A., Fouda, M. M., Kerby, L., & Fadlullah, Z. M. (2024). Advancing malaria identification from microscopic blood smears using hybrid deep learning frameworks. IEEE Access, 12, 71705-71715. https://doi.org/10.1109/ACCESS.2024.3402442
  Google Scholar

Diker, A. (2022). An efficient model of residual based convolutional neural network with Bayesian optimization for the classification of malarial cell images. Computers in Biology and Medicine, 148, 105635. https://doi.org/10.1016/j.compbiomed.2022.105635
  Google Scholar

Eckhardt, C. M., Madjarova, S. J., Williams, R. J., Ollivier, M., Karlsson, J., Pareek, A., & Nwachukwu, B. U. (2023). Unsupervised machine learning methods and emerging applications in healthcare. Knee Surgery, Sports Traumatology, Arthroscopy, 31(2), 376-381. https://doi.org/10.1007/s00167-022-07233-7
  Google Scholar

Ekpenyong, M. E., Edoho, M. E., Udo, I. J., Etebong, P. I., Uto, N. P., Jackson, T. C., & Obiakor, N. M. (2021). A transfer learning approach to drug resistance classification in mixed HIV dataset. Informatics in Medicine Unlocked, 24, 100568. https://doi.org/10.1016/j.imu.2021.100568
  Google Scholar

Eze, P. U., & Asogwa, C. O. (2021). Deep machine learning model trade-offs for malaria elimination in resource-constrained locations. Bioengineering, 8(11), 150. https://doi.org/10.3390/bioengineering8110150
  Google Scholar

Fana, S. A., Bunza, M. D. A., Anka, S. A., Imam, A. U., & Nataala, S. U. (2015). Prevalence and risk factors associated with malaria infection among pregnant women in a semi-urban community of north-western Nigeria. Infectious diseases of poverty, 4, 1-24. https://doi.org/10.1186/s40249-015-0054-0
  Google Scholar

Fikadu, M., & Ashenafi, E. (2023). Malaria: An overview. Infection and Drug Resistance, 2023(16), 3339-3347. https://doi.org/10.2147/IDR.S405668
  Google Scholar

Finda, M. F., Moshi, I. R., Monroe, A., Limwagu, A. J., Nyoni, A. P., Swai, J. K., Ngowo, H. S., Minja, E. G., Toe, L. P., Kaindoa, E. W., Coetzee, M., Manderson, L., & Okumu, F. O. (2019). Linking human behaviours and malaria vector biting risk in south-eastern Tanzania. Plos One, 14(6), e0217414. https://doi.org/10.1371/journal.pone.0217414
  Google Scholar

Fuhad, K. F., Tuba, J. F., Rahman, T., & Mohammed, N. (2020). CNN based model for malaria diagnosis with knowledge distillation. International Conference on Digital Signal Processing (pp. 131-135). Association for Computing Machinery. https://doi.org/10.1145/3408127.3408159
  Google Scholar

García, G. A., Janko, M., Hergott, D. E. B., Donfack, O. T., Smith, J. M., Mba Eyono, J. N., DeBoer, K. R., Nguema Avue, R. M., Phiri, W. P., Aldrich, E. M., Schwabe, C., Stabler, T. C., Rivas, M. R., Cameron, E., Guerra, C. A., Cook, J., Kleinschmidt, I., & Bradley, J. (2023). Identifying individual, household and environmental risk factors for malaria infection on Bioko Island to inform interventions. Malaria Journal, 22(1), 72. https://doi.org/10.1186/s12936-023-04504-7
  Google Scholar

Gezahegn, Y. G., Medhin, Y. H. G., Etsub, E. A., & Tekele, G. N. G. (2018). Malaria detection and classification using machine learning algorithms. Information and Communication Technology for Development for Africa: First International Conference (ICT4DA 2017) (pp. 24-33). Springer International Publishing. https://doi.org/10.1007/978-3-319-95153-9_3
  Google Scholar

Gilat, R., Gilat, B., Wagner, K., Patel, S., Haunschild, E. D., Tauro, T., Chahla, J., Yanke, B. A., & Cole, B. J. (2024). Evidence-based machine learning algorithm to predict failure following cartilage procedures in the knee. Journal of Cartilage & Joint Preservation, 4(3), 100161. https://doi.org/10.1016/j.jcjp.2023.100161
  Google Scholar

Golumbeanu, M., Yang, G. J., Camponovo, F., Stuckey, E. M., Hamon, N., Mondy, M., Rees, S., Chitnis, N., Cameron, E., & Penny, M. A. (2022). Leveraging mathematical models of disease dynamics and machine learning to improve development of novel malaria interventions. Infectious Diseases of Poverty, 11(03), 37-53. https://doi.org/10.1186/s40249-022-00981-1
  Google Scholar

Gooch, E. (2017). The impact of reduced incidence of malaria and other mosquito-borne diseases on global population. Journal of Development Economics, 124, 214-228. https://doi.org/10.1016/j.jdeveco.2016.10.003
  Google Scholar

Haileselassie, W., Parker, D. M., Taye, B., David, R. E., Zemene, E., Lee, M. C., Zhong, D., Zhou, G., Alemu, T., Tadele, G., Kazura, J. W., Koepfli, C., Deressa, W., Yewhalaw, D., & Yan, G. (2022). Burden of malaria, impact of interventions and climate variability in Western Ethiopia: An area with large irrigation based farming. BMC Public Health, 22, 196. https://doi.org/10.1186/s12889-022-12571-9
  Google Scholar

Harvey, D., Valkenburg, W., & Amara, A. (2021). Predicting malaria epidemics in Burkina Faso with machine learning. Plos One, 16(6), e0253302. https://doi.org/10.1371/journal.pone.0253302
  Google Scholar

Hastings, I. M., Hardy, D., Kay, K., & Sharma, R. (2020). Incorporating genetic selection into individual‐based models of malaria and other infectious diseases. Evolutionary applications, 13(10), 2723-2739. https://doi.org/10.1111/eva.13077
  Google Scholar

Helm, J. M., Swiergosz, A. M., Haeberle, H. S., Karnuta, J. M., Schaffer, J. L., Krebs, V. E., Spitzer, A. I., & Ramkumar, P. N. (2020). Machine learning and artificial intelligence: Definitions, applications, and future directions. Current Reviews in Musculoskeletal Medicine, 13, 69-76. https://doi.org/10.1007/s12178-020-09600-8
  Google Scholar

Hemachandran, K., Alasiry, A., Marzougui, M., Ganie, S. M., Pise, A. A., Alouane, M. T. H., & Chola, C. (2023). Performance analysis of deep learning algorithms in diagnosis of malaria disease. Diagnostics, 13(3), 534. https://doi.org/10.3390/diagnostics13030534
  Google Scholar

Hemingway, J., Shretta, R., Wells, T. N., Bell, D., Djimdé, A. A., Achee, N., & Qi, G. (2016). Tools and strategies for malaria control and elimination: what do we need to achieve a grand convergence in malaria? PLoS biology, 14(3), e1002380. https://doi.org/10.1371/journal.pbio.1002380
  Google Scholar

Hoyos, K., & Hoyos, W. (2024). Supporting malaria diagnosis using deep learning and data augmentation. Diagnostics, 14(7), 690. https://doi.org/10.3390/diagnostics14070690
  Google Scholar

Iftikhar, S., Imran, T., ElAmir, M., Fatima, K., Saeed, A., & Alansari, N. A. (2024). A novel ODMC model for malaria blood smear classification using deep feature fusion and optimization. https://doi.org/10.21203/rs.3.rs-4467158/v1
  Google Scholar

Ikerionwu, C., Ugwuishiwu, C., Okpala, I., James, I., Okoronkwo, M., Nnadi, C., Orji, U., Ebem, D., & Ike, A. (2022). Application of machine and deep learning algorithms in optical microscopic detection of Plasmodium: A malaria diagnostic tool for the future. Photodiagnosis and photodynamic therapy, 40, 103198. https://doi.org/10.1016/j.pdpdt.2022.103198
  Google Scholar

Jahan, R., & Alam, S. (2023). Improving classification accuracy using hybrid machine learning algorithms on malaria dataset. Engineering Proceedings, 56(1), 232. https://doi.org/10.3390/ASEC2023-15924
  Google Scholar

James, I. I., & Osubor, V. (2023). Curated big data for supervised machine learning: A case of malaria indicator and demographic health surveys data. The Journal of Computer Science and Its Applications, 30(2).
  Google Scholar

Jayatilake, S. M. D. A. C., & Ganegoda, G. U. (2021). Involvement of machine learning tools in healthcare decision making. Journal of Healthcare Engineering, 2021(1), 6679512. https://doi.org/10.1155/2021/6679512
  Google Scholar

Jdey, I., Hcini, G., & Ltifi, H. (2023). Deep learning and machine learning for malaria detection: Overview, challenges and future directions. International Journal of Information Technology & Decision Making, 23(05), 1745-1776. https://doi.org/10.1142/S0219622023300045
  Google Scholar

Jiang, F., Fu, Y., Gupta, B. B., Liang, Y., Rho, S., Lou, F., Meng, F., & Tian, Z. (2018). Deep learning based multi-channel intelligent attack detection for data security. IEEE transactions on Sustainable Computing, 5(2), 204-212. https://doi.org/10.1109/TSUSC.2018.2793284
  Google Scholar

Jimoh, R. G., Abisoye, O. A., & Uthman, M. M. B. (2022). Ensemble feed-forward neural network and support vector machine for prediction of multiclass malaria infection. Journal of Information and Communication Technology, 21(1), 117-148. https://doi.org/10.32890/jict2022.21.1.6
  Google Scholar

Joshi, A. V. (2020). Machine learning and artificial intelligence. Springer.
  Google Scholar

Khalighifar, A., Jiménez-García, D., Campbell, L. P., Ahadji-Dabla, K. M., Aboagye-Antwi, F., Ibarra-Juárez, L. A., & Peterson, A. T. (2022). Application of deep learning to community-science-based mosquito monitoring and detection of novel species. Journal of Medical Entomology, 59(1), 355-362. https://doi.org/10.1093/jme/tjab161
  Google Scholar

Khan, O., Ajadi, J. O., & Hossain, M. P. (2024). Predicting malaria outbreak in The Gambia using machine learning techniques. Plos One, 19(5), e0299386. https://doi.org/10.1371/journal.pone.0299386
  Google Scholar

Khan, S., Sajjad, M., Hussain, T., Ullah, A., & Imran, A. S. (2020). A review on traditional machine learning and deep learning models for WBCs classification in blood smear images. IEEE Access, 9, 10657-10673. https://doi.org/10.1109/ACCESS.2020.3048172
  Google Scholar

Khoirunnisa, A., & Ramadhan, N. G. (2023). Improving malaria prediction with ensemble learning and robust scaler: An integrated approach for enhanced accuracy. Jurnal Infotel, 15(4), 326-334. https://doi.org/10.20895/infotel.v15i4.1056
  Google Scholar

Kolawole, E. O., Ayeni, E. T., Abolade, S. A., Ugwu, S. E., Awoyinka, T. B., Ofeh, A. S., & Okolo, B. O. (2023). Malaria endemicity in Sub-Saharan Africa: Past and present issues in public health. Microbes and Infectious Diseases, 4(1), 242-251. https://doi.org/10.21608/MID.2022.150194.1346
  Google Scholar

Komugabe, M. A., Caballero, R., Shabtai, I., & Musinguzi, S. P. (2024). Advancing malaria prediction in Uganda through AI and geospatial analysis models. Journal of Geographic Information System, 16(2), 115-135. https://doi.org/10.4236/jgis.2024.162008
  Google Scholar

Kumar, S., Vardhan, H., Priya, S., & Kumar, A. (2023). Malaria detection using deep convolution neural network. ArXiv, abs/2303.03397. https://doi.org/10.48550/arXiv.2303.03397
  Google Scholar

Kundu, T. K., & Anguraj, D. K. (2023). Optimal machine mearning based automated malaria parasite detection and classification model using blood smear images. Traitement du Signal, 40(1), 91-99. https://doi.org/10.18280/ts.400108
  Google Scholar

Lalli, M., & Amutha, S. (2020). Applications of deep learning and machine learning in healthcare domain - A literature review. International Journal of Electrical Engineering and Technology, 11(8), 113-126. https://doi.org/10.34218/IJEET.11.8.2020.011
  Google Scholar

Lee, Y. W., Choi, J. W., & Shin, E. H. (2021). Machine learning model for predicting malaria using clinical information. Computers in Biology and Medicine, 129, 104151. https://doi.org/10.1016/j.compbiomed.2020.104151
  Google Scholar

Lestarini, D., Raflesia, S. P., Puspita, I., Liana, P., & Kurnianto, A. (2018). Knowledge-based system for malaria prevention and control: A conceptual model. 2018 International Conference on Sustainable Information Engineering and Technology (SIET) (pp. 16-20). IEEE. https://doi.org/10.1109/SIET.2018.8693157
  Google Scholar

Li, C., & Xu, P. (2021). Application on traffic flow prediction of machine learning in intelligent transportation. Neural Computing and Applications, 33(2), 613-624. https://doi.org/10.1007/s00521-020-05002-6
  Google Scholar

Liu, L. (2022). e‐Commerce personalized recommendation based on machine learning technology. Mobile Information Systems, 2022(1), 1761579. https://doi.org/10.1155/2022/1761579
  Google Scholar

Liu, R., Liu, T., Dan, T., Yang, S., Li, Y., Luo, B., Zhuang, Y., Xinyue Fan, X., Zhang, X., Cai, H., & Teng, Y. (2023). AIDMAN: An AI-based object detection system for malaria diagnosis from smartphone thin-blood-smear images. Patterns, 4(9), 100806. https://doi.org/10.1016/j.patter.2023.100806
  Google Scholar

Loddo, A., Fadda, C., & Di Ruberto, C. (2022). An empirical evaluation of convolutional networks for malaria diagnosis. Journal of Imaging, 8(3), 66. https://doi.org/10.3390/jimaging8030066
  Google Scholar

Loh, D. R., Yong, W. X., Yapeter, J., Subburaj, K., & Chandramohanadas, R. (2021). A deep learning approach to the screening of malaria infection: Automated and rapid cell counting, object detection and instance segmentation using Mask R-CNN. Computerized Medical Imaging and Graphics, 88, 101845. https://doi.org/10.1016/j.compmedimag.2020.101845
  Google Scholar

Lukwa, A. T., Chiwire, P., Aggrey, S., Akinsolu, F. T., Nyabunze, A., & Okova, D. (2024). Evaluating value-based maternal healthcare in sub-saharan Africa: A systematic review. Women, 4(3), 226-240. https://doi.org/10.3390/women4030017
  Google Scholar

Mahesh, B. (2020). Machine learning algorithms - a review. International Journal of Science and Research. 9(1), 381-386. https://doi.org/10.21275/ART20203995
  Google Scholar

Makondo, N., Folarin, A. L., Zitha, S. N., & Remy, S. L. (2021). An analysis of reinforcement learning for malaria control. ArXiv, abs/2107.08988. https://doi.org/10.48550/arXiv.2107.08988
  Google Scholar

Mariki, M., Mduma, N., & Mkoba, E. (2022). Feature selection approach to improve malaria prediction model’s performance for high-and low-endemic areas of tanzania. International Conference on Technological Advancement in Embedded and Mobile Systems (pp. 53-69). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-56576-2_6
  Google Scholar

Martineau, P., Behera, S. K., Nonaka, M., Jayanthi, R., Ikeda, T., Minakawa, N., Kruger, P., & Mabunda, Q. E. (2022). Predicting malaria outbreaks from sea surface temperature variability up to 9 months ahead in Limpopo, South Africa, using machine learning. Frontiers in Public Health, 10, 962377. https://doi.org/10.3389/fpubh.2022.962377
  Google Scholar

Maturana, C. R., de Oliveira, A. D., Nadal, S., Serrat, F. Z., Sulleiro, E., Ruiz, E., Bilalli, B., Veiga, A., Espasa, M., Abelló, A., Suñé, T. P., Segú, M., López-Codina, D., Clols, E. S.,& Joseph-Munné, J. (2023). iMAGING: a novel automated system for malaria diagnosis by using artificial intelligence tools and a universal low-cost robotized microscope. Frontiers in microbiology, 14, 1240936. https://doi.org/10.3389/fmicb.2023.1240936
  Google Scholar

Mbunge, E., & Batani, J. (2023). Application of deep learning and machine learning models to improve healthcare in sub-Saharan Africa: Emerging opportunities, trends and implications. Telematics and Informatics Reports, 11 100097. https://doi.org/10.1016/j.teler.2023.100097
  Google Scholar

Mbunge, E., Milham, R. C., Sibiya, M. N., & Takavarasha Jr, S. (2023). Machine learning techniques for predicting malaria: Unpacking emerging challenges and opportunities for tackling malaria in sub-saharan Africa. Computer Science On-line Conference (pp. 327-344). Springer International Publishing. https://doi.org/10.1007/978-3-031-35314-7_30
  Google Scholar

Mohapatra, P., Tripathi, N. K., Pal, I., & Shrestha, S. (2020). Comparative analysis of machine learning classifiers for the prediction of malaria incidence attributed to climatic factors. https://doi.org/10.21203/rs.3.rs-52162/v1
  Google Scholar

Mokuolu, O. A., Bolarinwa, O. A., Opadiran, O. R., Ameen, H. A., Dhorda, M., Cheah, P. Y., Amaratunga, C., de Haan, F., Tindana, P., & Dondorp, A. M. (2023). A framework for stakeholder engagement in the adoption of new anti-malarial treatments in Africa: A case study of Nigeria. Malaria Journal, 22, 185. https://doi.org/10.1186/s12936-023-04622-2
  Google Scholar

Morang’a, C. M., Amenga–Etego, L., Bah, S. Y., Appiah, V., Amuzu, D. S., Amoako, N., Abugri, J., Oduro, A. R., Cunnington, A. J., Awandare, G. A., & Otto, T. D. (2020). Machine learning approaches classify clinical malaria outcomes based on haematological parameters. BMC medicine, 18, 375. https://doi.org/10.1186/s12916-020-01823-3
  Google Scholar

Mswahili, M. E., Martin, G. L., Woo, J., Choi, G. J., & Jeong, Y. S. (2021). Antimalarial drug predictions using molecular descriptors and machine learning against plasmodium falciparum. Biomolecules, 11(12), 750. https://doi.org/10.3390/biom11121750
  Google Scholar

Muhammad, S., Iqbal, M. M., Majeed, S., Saleem, Y., & Tariq, A. (2024). Malaria cell classification through exercising deep learning algorithms. Journal of Computing & Biomedical Informatics, 7(01), 53-61.
  Google Scholar

Mwanga, E. P., Minja, E. G., Mrimi, E., Jiménez, M. G., Swai, J. K., Abbasi, S., Ngowo, H. S., Siria, D. J., Mapua, S., Stica, C., Maia, M. F., Olotu, A., Sikulu-Lord, M. T., Baldini, F., Ferguson, H. M., Wynne, K., Selvaraj, P., Babayan, S. A., & Okumu, F. O. (2019). Detection of malaria parasites in dried human blood spots using mid-infrared spectroscopy and logistic regression analysis. Malaria Journal, 18, 341. https://doi.org/10.1186/s12936-019-2982-9
  Google Scholar

Neves, B. J., Braga, R. C., Alves, V. M., Lima, M. N., Cassiano, G. C., Muratov, E. N., Costa, F. T. M., & Andrade, C. H. (2020). Deep learning-driven research for drug discovery: Tackling malaria. Plos Computational Biology, 16(2), e1007025. https://doi.org/10.1371/journal.pcbi.1007025
  Google Scholar

Nguyen, V. B., Karim, B. M., Vu, B. L., Schlötterer, J., & Granitzer, M. (2019). Policy learning for malaria control. ArXiv, abs/1910.08926. https://doi.org/10.48550/arXiv.1910.08926
  Google Scholar

Nkiruka, O., Prasad, R., & Clement, O. (2021). Prediction of malaria incidence using climate variability and machine learning. Informatics in Medicine Unlocked, 22, 100508. https://doi.org/10.1016/j.imu.2020.100508
  Google Scholar

Ojurongbe, T. A., Afolabi, H. A., Bashiru, K. A., Sule, W. F., Akinde, S. B., Ojurongbe, O., & Adegoke, N. A. (2023). Prediction of malaria positivity using patients’ demographic and environmental features and clinical symptoms to complement parasitological confirmation before treatment. Tropical Diseases, Travel Medicine and Vaccines, 9, 24. https://doi.org/10.1186/s40794-023-00208-7
  Google Scholar

Okagbue, H. I., Oguntunde, P. E., Obasi, E. C., Adamu, P. I., & Opanuga, A. A. (2020). Diagnosing malaria from some symptoms: A machine learning approach and public health implications. Health and Technology, 11, 23-37. https://doi.org/10.1007/s12553-020-00488-5
  Google Scholar

Oladipo, H. J., Tajudeen, Y. A., Oladunjoye, I. O., Yusuff, S. I., Yusuf, R. O., Oluwaseyi, E. M., AbdulBasit, M. O., Adebisi, Y. A., & El-Sherbini, M. S. (2022). Increasing challenges of malaria control in sub-Saharan Africa: Priorities for public health research and policymakers. Annals of Medicine and Surgery, 81, 104366. https://doi.org/10.1016/j.amsu.2022.104366
  Google Scholar

Oladipupo, T. (2010). Types of machine learning algorithms. In Y. Zhang (Ed.), New Advances in Machine Learning. InTech. https://doi.org/10.5772/9385
  Google Scholar

Onuche-Ojo, E. S., Eseyin Joseph, B., Dako Apaleokhai, D., Izuafa Braimah, A., & Nigeria, J. (2024). Advancing malaria detection: A comparative study and proposal for web-based predictive application utilizing convolutional neural network and TensorFlow. International Journal of Research and Innovation in Applied Science, 9(6), 222-232. https://doi.org/10.51584/IJRIAS.2024.906020
  Google Scholar

Onyijen, O. H. O., Awe, O., & Olaitan, E. O. (2023). Malaria disease prediction in West Africa using selected machine learning technique. Western European Journal of Medicine and Medical Science, 1(1), 1-19.
  Google Scholar

Patrick, S. M., Bendiane, M. K., Kruger, T., Harris, B. N., Riddin, M. A., Trehard, H., de Jager, C., Bornman, R., & Gaudart, J. (2023). Household living conditions and individual behaviours associated with malaria risk: A community-based survey in the Limpopo River Valley, 2020, South Africa. Malaria Journal, 22, 156. https://doi.org/10.1186/s12936-023-04585-4
  Google Scholar

Pattanaik, P. A., Mittal, M., Khan, M. Z., & Panda, S. N. (2022). Malaria detection using deep residual networks with mobile microscopy. Journal of King Saud University-Computer and Information Sciences, 34(5), 1700-1705. https://doi.org/10.1016/j.jksuci.2020.07.003
  Google Scholar

Paudel, U., & Pant, K. P. (2020). Estimation of household health cost and climate adaptation cost with its health related determinants: empirical evidences from western Nepal. Heliyon, 6(11), e05492. https://doi.org/10.1016/j.heliyon.2020.e05492
  Google Scholar

Peprah, N. Y., Mohammed, W., Adu, G. A., Dadzie, D., Oppong, S., Barikisu, S., Narh, J., Appiah, S., Frimpong, J., & Malm, K. L. (2024). Patient socio-demographics and clinical factors associated with malaria mortality: a case control study in the northern region of Ghana. Malaria Journal, 23, 230. https://doi.org/10.1186/s12936-024-05038-2
  Google Scholar

Qadri, A. M., Raza, A., Eid, F., & Abualigah, L. (2023). A novel transfer learning-based model for diagnosing malaria from parasitized and uninfected red blood cell images. Decision Analytics Journal, 9, 100352. https://doi.org/10.1016/j.dajour.2023.100352
  Google Scholar

Qiu, J., Wu, Q., Ding, G., Xu, Y., & Feng, S. (2016). A survey of machine learning for big data processing. EURASIP Journal on Advances in Signal Processing, 2016, 67. https://doi.org/10.1186/s13634-016-0355-x
  Google Scholar

Quan, Q., Wang, J., & Liu, L. (2020). An effective convolutional neural network for classifying red blood cells in malaria diseases. Interdisciplinary Sciences: Computational Life Sciences, 12, 217-225. https://doi.org/10.1007/s12539-020-00367-7
  Google Scholar

Rajab, S., Nakatumba-Nabende, J., & Marvin, G. (2023). Interpretable machine learning models for predicting malaria. 2023 2nd International Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN) (pp. 1-6). IEEE. https://doi.org/10.1109/ICSTSN57873.2023.10151538
  Google Scholar

Rajaraman, S., Jaeger, S., & Antani, S. K. (2019). Performance evaluation of deep neural ensembles toward malaria parasite detection in thin-blood smear images. PeerJ, 7, e6977. https://doi.org/10.7717/peerj.6977
  Google Scholar

Rismayanti, N. (2024). Segmentation and feature extraction for malaria detection in blood smears. International Journal of Artificial Intelligence in Medical Issues, 2(1), 18-29. https://doi.org/10.56705/ijaimi.v2i1.138
  Google Scholar

Rosnelly, R., Riza, B. S., & Suparni, S. (2023). Comparative analysis of support vector machine and convolutional neural network for malaria parasite classification and feature extraction. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, 14(3), 194-217. https://doi.org/10.58346/JOWUA.2023.I3.015
  Google Scholar

Sahu, P., Priyadarshini, P., Tripathy, S., Das, Y., & Pradhan, S. (2023). Machine learning strategies for malaria risk prediction based on text-based clinical information. https://doi.org/10.21203/rs.3.rs-2938711/v1
  Google Scholar

Sarker, I. H. (2021). Machine learning: Algorithms, real-world applications and research directions. SN computer science, 2, 160. https://doi.org/10.1007/s42979-021-00592-x
  Google Scholar

Sarma, N., Patouillard, E., Cibulskis, R. E., & Arcand, J. L. (2019). The economic burden of malaria: revisiting the evidence. The American Journal of Tropical Medicine and Hygiene, 101(6), 1405-1415. https://doi.org/10.4269/ajtmh.19-0386
  Google Scholar

Sharma, R. K., Rajvanshi, H., Bharti, P. K., Nisar, S., Jayswar, H., Mishra, A. K., Saha, K. B., Shukla, M. M., Das, A., Kaur, H., Wattal, S. L., & Lal, A. A. (2021). Socio-economic determinants of malaria in tribal dominated Mandla district enrolled in Malaria Elimination Demonstration Project in Madhya Pradesh. Malaria Journal, 20, 7. https://doi.org/10.1186/s12936-020-03540-x
  Google Scholar

Shi, L., Guan, Z., Liang, C., & You, H. (2020). Automatic classification of plasmodium for malaria diagnosis based on ensemble neural network. 2020 2nd International Conference on Intelligent Medicine and Image Processing (pp. 80-85). Association for Computing Machinery. https://doi.org/10.1145/3399637.339964
  Google Scholar

Siłka, W., Wieczorek, M., Siłka, J., & Woźniak, M. (2023). Malaria detection using advanced deep learning architecture. Sensors, 23(3), 1501. https://doi.org/10.3390/s23031501
  Google Scholar

Singh, A., Mehra, M., Kumar, A., Niranjannaik, M., Priya, D., & Gaurav, K. (2023). Leveraging hybrid machine learning and data fusion for accurate mapping of malaria cases using meteorological variables in western India. Intelligent Systems with Applications, 17, 200164. https://doi.org/10.1016/j.iswa.2022.200164
  Google Scholar

Singh, M. P., Saha, K. B., Chand, S. K., & Sabin, L. L. (2019). The economic cost of malaria at the household level in high and low transmission areas of central India. Acta Tropica, 190, 344-349. https://doi.org/10.1016/j.actatropica.2018.12.003
  Google Scholar

Stephen, A., Akomolafe, P. O., & Ogundoyin, K. I. (2021). A model for predicting malaria outbreak using machine learning technique. Annals Computer Science Series, 19.
  Google Scholar

Taconet, P., Porciani, A., Soma, D. D., Mouline, K., Simard, F., Koffi, A. A., Pennetier, C., Dabiré, R. K., Mangeas, M., & Moiroux, N. (2021). Data-driven and interpretable machine-learning modeling to explore the fine-scale environmental determinants of malaria vectors biting rates in rural Burkina Faso. Parasites & Vectors, 14, 345. https://doi.org/10.1186/s13071-021-04851-x
  Google Scholar

Tai, K. Y., Dhaliwal, J., & Wong, K. (2022). Risk score prediction model based on single nucleotide polymorphism for predicting malaria: a machine learning approach. BMC bioinformatics, 23, 325. https://doi.org/10.1186/s12859-022-04870-0
  Google Scholar

Taye, A. G., Yemane, S., Negash, E., Minwuyelet, Y., Abebe, M., & Asmare, M. H. (2024). Automated web-based malaria detection system with machine learning and deep learning techniques. ArXiv, abs/2407.00120. https://doi.org/10.48550/arXiv.2407.00120
  Google Scholar

Tefera, D. R., Sinkie, S. O., & Daka, D. W. (2020). Economic burden of malaria and associated factors among rural households in Chewaka District, Western Ethiopia. Clinic Economics and outcomes research, 12, 141. https://doi.org/10.2147/CEOR.S241590
  Google Scholar

Tetteh, J. A., Djissem, P. E., & Manyeh, A. K. (2023). Prevalence, trends and associated factors of malaria in the Shai-Osudoku District Hospital, Ghana. Malaria Journal, 22, 131. https://doi.org/10.1186/s12936-023-04561-y
  Google Scholar

Tiwari, R. (2023). The integration of AI and machine learning in education and its potential to personalize and improve student learning experiences. International Journal of Scientific Research in Engineering and Management, 7. https://doi.org/10.55041/IJSREM17645
  Google Scholar

Treskova, M. (2020). Application of statistical and decision-analytic models for evidence synthesis for decision-making in public health and the healthcare sector. https://doi.org/10.15488/10096
  Google Scholar

Udo, I. J., & Ekpenyong, M. E. (2020). Improving emergency healthcare response using real-time collaborative technology. 4th International Conference on Medical and Health Informatics (pp. 165-173). Association for Computing Machinery. https://doi.org/10.1145/3418094.341811
  Google Scholar

Venkatesan, P. (2024). The 2023 WHO World malaria report. The Lancet Microbe, 5(3), e214. https://doi.org/10.1016/S2666-5247(24)00016-8
  Google Scholar

Verma, N., Singh, S., & Prasad, D. (2022). Machine learning and IoT‐based model for patient monitoring and early prediction of diabetes. Concurrency and Computation: Practice and Experience, 34(24), e7219. https://doi.org/10.1002/cpe.7219
  Google Scholar

Woolley, K. E., Bartington, S. E., Pope, F. D., Greenfield, S. M., Tusting, L. S., Price, M. J., & Thomas, G. N. (2022). Cooking outdoors or with cleaner fuels does not increase malarial risk in children under 5 years: A cross-sectional study of 17 sub-Saharan African countries. Malaria Journal, 21, 133. https://doi.org/10.1186/s12936-022-04152-3
  Google Scholar

Yadav, S. S., Kadam, V. J., Jadhav, S. M., Jagtap, S., & Pathak, P. R. (2021). Machine learning based malaria prediction using clinical findings. International Conference on Emerging Smart Computing and Informatics (ESCI) (pp. 216-222). IEEE. https://doi.org/10.1109/ESCI50559.2021.9396850
  Google Scholar

Yang, D., He, Y., Wu, B., Deng, Y., Li, M., Yang, Q., Huang, L., Cao, Y., & Liu, Y. (2019). Drinking water and sanitation conditions are associated with the risk of malaria among children under five years old in sub-Saharan Africa: A logistic regression model analysis of national survey data. Journal of Advanced Research, 21, 1-13. https://doi.org/10.1016/j.jare.2019.09.001
  Google Scholar

Yang, F., Poostchi, M., Yu, H., Zhou, Z., Silamut, K., Yu, J., Maude, R. J., Jaeger, S., & Antani, S. (2019). Deep learning for smartphone-based malaria parasite detection in thick blood smears. IEEE Journal of Biomedical and Health Informatics, 24(5), 1427-1438. https://doi.org/10.1109/JBHI.2019.2939121
  Google Scholar

Yang, F., Quizon, N., Yu, H., Silamut, K., Maude, R. J., Jaeger, S., & Antani, S. (2020). Cascading YOLO: Automated malaria parasite detection for plasmodium vivax in thin blood smears. Medical Imaging 2020: Computer-Aided Diagnosis (Vol. 11314, pp. 404-410). SPIE. https://doi.org/10.1117/12.2549701
  Google Scholar

Zelaya, C. V. G. (2019). Towards explaining the effects of data preprocessing on machine learning. 2019 IEEE 35th International Conference on Data Engineering (ICDE) (pp. 2086-2090). IEEE. https://doi.org/10.1109/ICDE.2019.00245
  Google Scholar

Download


Published
2025-03-31

Cited by

JAMES, I., & OSUBOR, V. (2025). Machine learning evidence towards eradication of malaria burden: A scoping review. Applied Computer Science, 21(1), 44–69. https://doi.org/10.35784/acs_6873

Authors

Idara JAMES 
idara.james@physci.uniben.edu
Akwa Ibom State University Nigeria
https://orcid.org/0000-0001-5497-7616

Authors

Veronica OSUBOR 

University of Benin Nigeria

Statistics

Abstract views: 13
PDF downloads: 2


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.