IDENTIFICATION OF THE MASS INERTIA MOMENT IN AN ELECTROMECHANICAL SYSTEM BASED ON WAVELET–NEURAL METHOD
Article Sidebar
Open full text
Issue Vol. 14 No. 2 (2018)
-
AN EFFECTIVE METAHEURISTIC FOR TOURIST TRIP PLANNING IN PUBLIC TRANSPORT NETWORKS
Krzysztof OSTROWSKI5-19
-
GRAPHICAL REPRESENTATIONS OF MULTITHREADED APPLICATIONS
Damian GIEBAS, Rafał WOJSZCZYK20-37
-
INTERMITTENT DEMAND FORECASTING USING DATA MINING TECHNIQUES
Gamze Ogcu KAYA, Ali TURKYILMAZ38-47
-
NEURAL CONTROLLER FOR THE SELECTION OF RECYCLED COMPONENTS IN POLYMER-GYPSY MORTARS
Grzegorz KŁOSOWSKI, Tomasz KLEPKA, Agnieszka NOWACKA48-59
-
POSSIBILITIES OF RENOVATION FUNCTIONAL SURFACES OF EQUIPMENTS IN THE MECHANICAL ENGINEERING INDUSTRY
Janette BREZINOVÁ, Ján VIŇÁŠ, Dagmar DRAGANOVSKÁ, Anna GUZANOVÁ, Jakub BREZINA60-68
-
THE INFLUENCE OF THE INJECTION TIMING ON THE PERFORMANCE OF TWO-STROKE OPPOSED-PISTON DIESEL ENGINE
Paweł KARPIŃSKI69-81
-
HIGH SPEED MILLING IN THIN-WALLED AIRCRAFT STRUCTURES
Paweł BAŁON, Edward REJMAN, Robert SMUSZ, Janusz SZOSTAK, Bartłomiej KIEŁBASA82-95
-
IDENTIFICATION OF THE MASS INERTIA MOMENT IN AN ELECTROMECHANICAL SYSTEM BASED ON WAVELET–NEURAL METHOD
Marcin TOMCZYK, Barbara BOROWIK, Bohdan BOROWIK96-111
Archives
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
-
Vol. 15 No. 4
2019-12-30 8
-
Vol. 15 No. 3
2019-09-30 8
-
Vol. 15 No. 2
2019-06-30 8
-
Vol. 15 No. 1
2019-03-30 8
-
Vol. 14 No. 4
2018-12-30 8
-
Vol. 14 No. 3
2018-09-30 8
-
Vol. 14 No. 2
2018-06-30 8
-
Vol. 14 No. 1
2018-03-30 7
-
Vol. 13 No. 4
2017-12-30 8
-
Vol. 13 No. 3
2017-09-30 8
-
Vol. 13 No. 2
2017-06-30 8
-
Vol. 13 No. 1
2017-03-30 8
Main Article Content
DOI
Authors
Abstract
This paper presents the results of testing of a complex electromechanical system model. These results have been obtained for accepted in simulations the method of identifying an inertia moment of reduced masses on shaft of induction motor drive during the changes of a backlash zone width. The effectiveness of correct diagnostic conclusions enables coefficients analysis of testing signals wavelet expansion as well as weights of a supervised learning neural network. The earlier fault detection of five important state variables, which describe physical quantities of chosen complex electromechanical system has been verified for its correctness during the backlash zone width monitoring in the early stage of its gradual rise. The proposed here algorithm with mass inertia moment changes has proved to be an effective diagnostic method in the area of system changeable dynamic conditions and this has been shown in the resulting changes of backlash zone width.
Keywords:
References
Doniec, R. (2010). Wykorzystanie metod sztucznej inteligencji do regulacji poziomu insuliny w organizmie człowieka (doctoral dissertation). Wydawnictwo Politechniki Śląskiej, Gliwice.
Duda, J. T. (2007). Pozyskiwanie wzorców diagnostycznych w komputerowych analizach sprawności urządzeń. In J. Korbicz, K. Patan, & M. Kowal (Eds.), Diagnostyka procesów i systemów (pp. 1–16). Warszawa: Akademicka Oficyna Wydawnicza EXIT.
Farronato, L., Monti A., Ponci, F., Ferrero, A., Cristaldi, L., & Lazzaroni, M. (2005). Virtual system Fault Models for Training Fuzzy-Wavelet Identifiers in Electrical Drive Diagnosis: an Experimental Validation. In IMTC 2005 Proceedings of the IEEE. Instrumentation and Measurement Technology Conference (pp. 2310–2315). Ottawa: IEEE. https://doi.org/10.1109/IMTC.2005.1604589 DOI: https://doi.org/10.1109/IMTC.2005.1604589
Ishkova, I., & Vitek, O. (2016). Detection and Classification of faults in induction motor by means of motor current signature analysis and stray flux monitoring. Przegląd Elektrotechniczny, 92(4), 166–170. https://doi.org/10.15199/48.2016.04.36 DOI: https://doi.org/10.15199/48.2016.04.36
Korbicz, J. (2002). Diagnostyka procesów. Modele. Metody sztucznej inteligencji. Zastosowania. Warszawa: WNT.
Kowalski, Cz. (2006). Zastosowanie analizy falkowej w diagnostyce silników indukcyjnych. Przegląd Elektrotechniczny, 82(1), 21–26.
Rusiecki, A. (2007). Algorytmy uczenia sieci neuronowych odporne na błędy w danych (doctoral dissertation). Politechnika Wrocławska, Wrocław.
Wolkiewicz, M., & Kowalski, Cz. (2015). Diagnostyka uszkodzeń uzwojeń stojana silnika indukcyjnego z wykorzystaniem dyskretnej transformaty falkowej obwiedni prądu stojana. Maszyny elektryczne: zeszyty problemowe, 3(107), 13–18.
Yayakumar, K., Thangavel, S., & Elango, M. K. (2015). Backpropagation Algorithm for Bearing Fault Detection of Induction Motor Drive Using Wavelet Packet Decomposition. International Journal of Applied Engineering Research, 10(10), 26191–26208.
Article Details
Abstract views: 212
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
