ANALYSIS OF THE POSSIBILITY OF USING THE SINGULAR VALUE DECOMPOSITION IN IMAGE COMPRESSION
Edyta ŁUKASIK
e.lukasik@pollub.plDepartment of Computer Science, Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Lublin, (Poland)
Emilia ŁABUĆ
Department of Computer Science, Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Lublin (Poland)
Abstract
In today’s highly computerized world, data compression is a key issue to minimize the costs associated with data storage and transfer. In 2019, more than 70% of the data sent over the network were images. This paper analyses the feasibility of using the SVD algorithm in image compression and shows that it improves the efficiency of JPEG and JPEG2000 compression. Image matrices were decomposed using the SVD algorithm before compression. It has also been shown that as the image dimensions increase, the fraction of eigenvalues that must be used to reconstruct the image in good quality decreases. The study was carried out on a large and diverse set of images, more than 2500 images were examined. The results were analyzed based on criteria typical for the evaluation of numerical algorithms operating on matrices and image compression: compression ratio, size of compressed file, MSE, number of bad pixels, complexity, numerical stability, easiness of implementation.
Keywords:
singular value decomposition, JPEG2000, JPEG, discrete wavelet transform, discrete cosine transformReferences
Anutam, & Rajni. (2014). Comparative Analysis of Filters and Wavelet Based Thresholding Methods for Image Denoising. Computer Science & Amp; Information Technology (CS &Amp; IT ) (pp. 137–148). https://doi.org/10.5121/csit.2014.4515
DOI: https://doi.org/10.5121/csit.2014.4515
Google Scholar
Arps, R., & Truong, T. (1994). Comparison of international standards for lossless still image compression. Proceedings of the IEEE, 82(6), 889–899. https://doi.org/10.1109/5.286193
DOI: https://doi.org/10.1109/5.286193
Google Scholar
Bovik, A. C. (2009). The Essential Guide to Image Processing (1st ed.). Academic Press.
DOI: https://doi.org/10.1016/B978-0-12-374457-9.00001-9
Google Scholar
Britanak, V., Yip, P. C., & Rao, K. (2007). CHAPTER 4 – Fast DCT/DST Algorithms. Discrete Cosine and Sine Transforms. General Properties, Fast Algorithms and Integer Approximations (pp. 73–140). Academic Press. https://doi.org/10.1016/b978-012373624-6/50006-0
DOI: https://doi.org/10.1016/B978-012373624-6/50006-0
Google Scholar
Cao, L. (2006). SVD applied to digital image processing. Division of Computing Studies, Arizona State University Polytechnic Campus.
Google Scholar
Chen, Y., Mukherjee, D., Han, J., Grange, A., Xu, Y., Parker, S., Chen, C., Su, H., Joshi, U., Chiang, C. H., Wang, Y., Wilkins, P., Bankoski, J., Trudeau, L., Egge, N., Valin, J. M., Davies, T., Midtskogen, S., Norkin, A., de Rivaz, P., Design, A., & Liu, Z. (2020). An Overview of Coding Tools in AV1: the First Video Codec from the Alliance for Open Media. APSIPA Transactions on Signal and Information Processing, 9(1), e6. https://doi.org/10.1017/atsip.2020.2
DOI: https://doi.org/10.1017/ATSIP.2020.2
Google Scholar
Compton, E. A., & Ernstberger, S. L. (2020). Singular Value Decomposition: Applications to Image Processing. Lagrange College. Journal of Undergraduate Research, 17, 99–105.
Google Scholar
Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2005). Wprowadzenie do algorytmów. Wydawnictwo Naukowe PWN.
Google Scholar
Davies, E. R. (2017). Computer Vision: Principles, Algorithms, Applications, Learning. Elsevier Gezondheidszorg. Dhawan, S. (2011). A Review of Image Compression and Comparison of its Algorithms. https://www.semanticscholar.org/paper/A-Review-of-Image-Compression-and-Comparison-of-itsDhawan/034dcf50d99bbd9870c5c2e67201f6d792f96a5f
Google Scholar
Dumka, A., Ashok, A., Verma, P., & Verma, P. (2020). Advanced Digital Image Processing and Its Applications in Big Data (1st ed.). CRC Press.
DOI: https://doi.org/10.1201/9780429351310
Google Scholar
Gandhi, T., Patel, H., & Prajapati, D. (2015). Image Compression Using Fractal: Image compression based upon the self-similarities present in the image. LAP LAMBERT Academic Publishing.
Google Scholar
Gong, L., Deng, C., Pan, S., & Zhou, N. (2018). Image compression-encryption algorithms by combining hyper-chaotic system with discrete fractional random transform. Optics &Amp; Laser Technology, 103, 48–58. https://doi.org/10.1016/j.optlastec.2018.01.007
DOI: https://doi.org/10.1016/j.optlastec.2018.01.007
Google Scholar
Hoffman, R. (1997). Data Compression in Digital Systems. Springer Publishing.
DOI: https://doi.org/10.1007/978-1-4615-6031-9
Google Scholar
Hoffman, R. (2012). Data Compression in Digital Systems. Springer Publishing.
Google Scholar
Jackson, D., & Hannah, S. (1993). Comparative analysis of image compression techniques. 1993 (25th) Southeastern Symposium on System Theory (pp. 513–517). IEEE. https://doi.org/10.1109/ssst.1993.522833
DOI: https://doi.org/10.1109/SSST.1993.522833
Google Scholar
Jankowska, J., & Jankowski, M. (1988). Przegląd metod i algorytmów numerycznych. Wydawnictwa Naukowo-Techniczne.
Google Scholar
Jinchuang, Z., Yan, T., & Wenli, F. (2009). Research of image compression based on Wireless visual sensor networks. 4th International Conference on Computer Science & Education (pp. 353–356). IEEE. https://doi.org/10.1109/iccse.2009.5228430
DOI: https://doi.org/10.1109/ICCSE.2009.5228430
Google Scholar
Karwowski, D. (2019). Zrozumieć kompresję obrazu: podstawy technik kodowania stratnego oraz bezstratnego obrazów. Damian Karwowski.
Google Scholar
Kostrikin, A. I. (2004). Wstęp do algebry cz. 1 i cz. 2 Podstawy algebry. Wydawnictwo Naukowe PWN.
Google Scholar
Lu, Z., & Guo, S. (2016). Lossless Information Hiding in Images (1st ed.). Syngress.
DOI: https://doi.org/10.1016/B978-0-12-812006-4.00001-2
Google Scholar
Mammeri, A., Hadjou, B., & Khoumsi, A. (2012). A Survey of Image Compression Algorithms for Visual Sensor Networks. International Scholarly Research Notices, 2012, 760320. https://doi.org/10.5402/2012/760320
DOI: https://doi.org/10.5402/2012/760320
Google Scholar
Miano, J. (1999). Compressed Image File Formats: JPEG, PNG, GIF, XBM, BMP. Addison-Wesley Professional.
Google Scholar
Murray, J. D., & VanRyper, W. (1996). Encyclopedia of Graphics File Formats. O’Reilly & Associates.
Google Scholar
Nasri, M., Helali, A., Sghaier, H., & Maaref, H. (2010). Energy-efficient wavelet image compression in Wireless Sensor Network. 2010 International Conference on Wireless and Ubiquitous Systems (pp. 1–7). IEEE. https://doi.org/10.1109/icwus.2010.5670430
DOI: https://doi.org/10.1109/ICWUS.2010.5670430
Google Scholar
Nixon, M., & Aguado, A. (2019). Feature Extraction and Image Processing for Computer Vision (4th ed.). Academic Press.
DOI: https://doi.org/10.1016/B978-0-12-814976-8.00003-8
Google Scholar
Parekh, D. (2021, April 25). Image Compression Standards | Digital Image Processing [Video file]. YouTube. https://www.youtube.com/watch?v=6IuKH7IGspU
Google Scholar
Pratt, W., Kane, J., & Andrews, H. (1969). Hadamard transform image coding. Proceedings of the IEEE, 57(1), 58–68. https://doi.org/10.1109/proc.1969.6869
DOI: https://doi.org/10.1109/PROC.1969.6869
Google Scholar
Pu, I. M. (2005). Fundamental Data Compression (1st ed.). Butterworth-Heinemann.
DOI: https://doi.org/10.1016/B978-075066310-6/50004-0
Google Scholar
Salomon, D., Motta, G., & Bryant, D. (2007). Data Compression: The Complete Reference. Springer Publishing.
Google Scholar
Sayood, K. (2002). Lossless Compression Handbook. Elsevier Gezondheidszorg.
DOI: https://doi.org/10.1201/9781420041163-101
Google Scholar
Shih, C. W., Chu, H. C., Chen, Y. M., & Wen, C. C. (2012). The effectiveness of image features based on fractal image coding for image annotation. Expert Systems With Applications, 39(17), 12897–12904. https://doi.org/10.1016/j.eswa.2012.05.003
DOI: https://doi.org/10.1016/j.eswa.2012.05.003
Google Scholar
Short, M. N., Manohar, M., & Tilton, J. C. (1994). Planning/Scheduling Techniques for VQ-Based Image Compression. Science Information Management and Data Compression Workshop. 1994 Science Information Management and Data Compression Workshop (pp. 95–104). US Government.
Google Scholar
Shukla, K. K., & Prasad, M. V. (2011). Lossy Image Compression: Domain Decomposition-Based Algorithms. Springer Publishing.
DOI: https://doi.org/10.1007/978-1-4471-2218-0
Google Scholar
Stewart, G. W. (2001). Matrix Algorithms: Volume 2, Eigensystems (1st ed.). SIAM: Society for Industrial and Applied Mathematics.
DOI: https://doi.org/10.1137/1.9780898718058
Google Scholar
Swathi, H. R., Sohini, S., Surbhi, & Gopichand, G. (2017). Image compression using singular value decomposition. IOP Conference Series: Materials Science and Engineering, 263, 042082. https://doi.org/10.1088/1757-899x/263/4/042082
DOI: https://doi.org/10.1088/1757-899X/263/4/042082
Google Scholar
Tanwar, S., Ramani, T., & Tyagi, S. (2018). Dimensionality Reduction Using PCA and SVD in Big Data: A Comparative Case Study. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (pp. 116–125). Springer. https://doi.org/10.1007/978-3-319-73712-6_12
DOI: https://doi.org/10.1007/978-3-319-73712-6_12
Google Scholar
Wayner, P. (1999). Compression Algorithms for Real Programmers. Elsevier Gezondheidszorg. What’s the difference between ‘visually lossless’ and real lossless and what does this mean for future encodes? (2019, May 18). Video Production Stack Exchange. Retrieved May 2022 from https://video.stackexchange.com/questions/27656/whats-the-difference-between-visually-lossless-andreal-lossless-and-what-doe
Google Scholar
Xiao, F., Zhang, P., Sun, L. J., Wang, J., & Wang, R. C. (2011). Research on image compression and transmission mechanism for wireless multimedia sensor networks. 2011 International Conference on Electrical and Control Engineering (pp. 788–791). IEEE. https://doi.org/10.1109/iceceng.2011.6057601
DOI: https://doi.org/10.1109/ICECENG.2011.6057601
Google Scholar
Authors
Edyta ŁUKASIKe.lukasik@pollub.pl
Department of Computer Science, Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Lublin, Poland
Authors
Emilia ŁABUĆDepartment of Computer Science, Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Lublin Poland
Statistics
Abstract views: 112PDF downloads: 115
License
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Most read articles by the same author(s)
- Edyta ŁUKASIK, Wiktor FLIS, EFFICIENCY COMPARISON OF NETWORKS IN HANDWRITTEN LATIN CHARACTERS RECOGNITION WITH DIACRITICS , Applied Computer Science: Vol. 19 No. 4 (2023)
Similar Articles
- Wulan Dewi, Wiranto Herry Utomo, PLANT CLASSIFICATION BASED ON LEAF EDGES AND LEAF MORPHOLOGICAL VEINS USING WAVELET CONVOLUTIONAL NEURAL NETWORK , Applied Computer Science: Vol. 17 No. 1 (2021)
- Michał TOMCZYK, Anna PLICHTA, Mariusz MIKULSKI, APPLICATION OF WAVELET – NEURAL METHOD TO DETECT BACKLASH ZONE IN ELECTROMECHANICAL SYSTEMS GENERATING NOISES , Applied Computer Science: Vol. 15 No. 4 (2019)
- Marcin TOMCZYK, Anna PLICHTA, Mariusz MIKULSKI, APPLICATION OF IMAGE ANALYSIS TO THE IDENTIFICATION OF MASS INERTIA MOMENTUM IN ELECTROMECHANICAL SYSTEM WITH CHANGEABLE BACKLASH ZONE , Applied Computer Science: Vol. 15 No. 3 (2019)
- Marcin TOMCZYK, Barbara BOROWIK, Bohdan BOROWIK, IDENTIFICATION OF THE MASS INERTIA MOMENT IN AN ELECTROMECHANICAL SYSTEM BASED ON WAVELET–NEURAL METHOD , Applied Computer Science: Vol. 14 No. 2 (2018)
- Marcin TOMCZYK, Barbara BOROWIK, Mariusz MIKULSKI, IDENTIFICATION OF A BACKLASH ZONE IN AN ELECTROMECHANICAL SYSTEM CONTAINING CHANGES OF A MASS INERTIA MOMENT BASED ON A WAVELET–NEURAL METHOD , Applied Computer Science: Vol. 14 No. 4 (2018)
- Krzysztof NIEMIEC, Grzegorz BOCEWICZ, AN AUTHENTICATION METHOD BASED ON A DIOPHANTINE MODEL OF THE COIN BAG PROBLEM , Applied Computer Science: Vol. 20 No. 2 (2024)
- Islam MOHAMED, Mohamed EL-WAKAD, Khaled ABBAS, Mohamed ABOAMER, Nader A. Rahman MOHAMED, PUPIL DIAMETER AND MACHINE LEARNING FOR DEPRESSION DETECTION: A COMPARATIVE STUDY WITH DEEP LEARNING MODELS , Applied Computer Science: Vol. 20 No. 4 (2024)
- Tomasz NOWICKI, Adam GREGOSIEWICZ, Zbigniew ŁAGODOWSKI, PRODUCTIVITY OF A LOW-BUDGET COMPUTER CLUSTER APPLIED TO OVERCOME THE N-BODY PROBLEM , Applied Computer Science: Vol. 17 No. 4 (2021)
- Hamid JAN, Amjad ALI, OPTIMIZATION OF FINGERPRINT SIZE FOR REGISTRATION , Applied Computer Science: Vol. 15 No. 2 (2019)
- Rowell HERNANDEZ, Robert ATIENZA, CAREER TRACK PREDICTION USING DEEP LEARNING MODEL BASED ON DISCRETE SERIES OF QUANTITATIVE CLASSIFICATION , Applied Computer Science: Vol. 17 No. 4 (2021)
You may also start an advanced similarity search for this article.