MATCHING PURSUIT ALGORITHM IN ASSESSING THE STATE OF ROLLING BEARINGS
Article Sidebar
Open full text
Issue Vol. 13 No. 2 (2017)
-
APPLICATION OF THE AUGMENTED REALITY IN PRODUCTION PRACTICE
Dariusz PLINTA, Martin KRAJČOVIČ5-14
-
THE USE OF UNITY 3D IN A SERIOUS GAME DEDICATED TO DEVELOPMENT OF FIREARM HANDLING SKILLS
Lukasz DZIAK, Malgorzata PLECHAWSKA-WÓJCIK15-22
-
THE NUMERICAL MODEL OF 2G YBCO SUPERCONDUCTING TAPE IN THE WINDINGS OF THE TRANSFORMER
Łukasz WOŹNIAK, Paweł SURDACKI, Leszek JAROSZYŃSKI23-38
-
THE NONUNIFORMITY OF THE PISTON MOTION OF THE RADIAL ENGINE
Konrad PIETRYKOWSKI, Tytus TULWIN39-47
-
DEA-BASED DYNAMIC ASSESSMENT OF REGIONAL ENVIRONMENTAL EFFICIENCY
Svetlana RATNER, Pavel RATNER48-60
-
MATCHING PURSUIT ALGORITHM IN ASSESSING THE STATE OF ROLLING BEARINGS
Kamil JONAK, Paweł KRUKOW61-71
-
A SIMULATION EXPERIMENT AND MULTI-CRITERIA ASSESSMENT OF MANUFACTURING PROCESS FLOW VARIANTS TESTED ON A COMPUTER MODEL
Sławomir KUKLA, Marek SMETANA72-81
-
COMPUTER AIDED THERMAL PROCESSES IN TECHNICAL SPACES
Marian JANCZAREK, Oleksij BULYANDRA82-93
Archives
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
-
Vol. 15 No. 4
2019-12-30 8
-
Vol. 15 No. 3
2019-09-30 8
-
Vol. 15 No. 2
2019-06-30 8
-
Vol. 15 No. 1
2019-03-30 8
-
Vol. 14 No. 4
2018-12-30 8
-
Vol. 14 No. 3
2018-09-30 8
-
Vol. 14 No. 2
2018-06-30 8
-
Vol. 14 No. 1
2018-03-30 7
-
Vol. 13 No. 4
2017-12-30 8
-
Vol. 13 No. 3
2017-09-30 8
-
Vol. 13 No. 2
2017-06-30 8
-
Vol. 13 No. 1
2017-03-30 8
Main Article Content
DOI
Authors
Abstract
In this paper the results of Matching Pursuit (MP) Octave algorithm applied to noise, vibration and harness (NVH) diagnosis of rolling bearings are presented. For this purpose two bearings in different condition state were examined. The object of the analysis was to calculate and present which energy error values of MP algorithm give the most accuracy results for different changes in bearing structures and also how energy values spread in time-frequency domain for chosen energy error value.
Keywords:
References
Cempel, C. (1989). Wibroakustyka Stosowana. Warszawa: PWN.
Chandra, H. N., & Sekhar, A. S. (2016). Fault detection in rotor bearing systems using time frequency techniques. Mechanical Systems and Signal Processing, 72–73, 105–133. https://doi.org/10.1016/j.ymssp.2015.11.013 DOI: https://doi.org/10.1016/j.ymssp.2015.11.013
Chandran, S., Mishra, A., Shirhatti, V., & Ray, S. (2016). Comparison of Matching Pursuit Algorithm with Other Signal Processing Techniques for Computation of the Time-Frequency Power Spectrum of Brain Signals. The Journal of Neuroscience, 36(12), 3399–3408. https://doi.org/10.1523/JNEUROSCI.3633-15.2016 DOI: https://doi.org/10.1523/JNEUROSCI.3633-15.2016
Cui, L., Wu, N., Ma, C., & Wang, H. (2016). Quantitative fault analysis of roller bearings based on a novel matching pursuit method with a new step-impulse dictionary. Mechanical Systems and Signal Processing, 68-69, 34–43. https://doi.org/10.1016/j.ymssp.2015.05.032 DOI: https://doi.org/10.1016/j.ymssp.2015.05.032
Cui, L., Gong, X., Zhang, J., & Wang, H. (2016). Double-dictionary matching pursuit for fault extent evaluation of rolling bearing based on the Lempel-Ziv complexity. Journal of Sound and Vibration, 385, 372–388. https://doi.org/10.1016/j.jsv.2016.09.008 DOI: https://doi.org/10.1016/j.jsv.2016.09.008
Cui, L., Wang, J., & Lee, S. (2014). Matching pursuit of and adaptive impulse dictionary for bearing fault diagnosis. Journal of Sound and Vibration, 333, 2840–2862. https://doi.org/10.1016/j.jsv.2013.12.029 DOI: https://doi.org/10.1016/j.jsv.2013.12.029
Durka, P. J., Ircha, M., & Blinowska, K. J. (2001). Stochastic Time-Frequency Dictionaries for Matching Pursuit. IEEE Transactions of Signal Processing, 49, 507–510. https://doi.org/10.1109/78.905866 DOI: https://doi.org/10.1109/78.905866
Gao, R. X., & Yan, R. (2011). Wavelets: Theory and Applications for Manufacturing. Springer. https://doi.org/10.1007/978-1-4419-1545-0_2 DOI: https://doi.org/10.1007/978-1-4419-1545-0_2
He, G., Ding, K., & Lin, H. (2016). Fault feature of rolling element bearings using sparse representation. Journal of Sound and Vibration, 366, 514–527. https://doi.org/10.1016/j.jsv.2015.12.020 DOI: https://doi.org/10.1016/j.jsv.2015.12.020
Kuś, R., Różański, P. T., & Durka, P. J. (2013). Multivariate matching pursuit in optimal Gabor dictionaries: theroy and software with interface for EEG/MEG via Svarog. Biomedical Engineering Online, 12, 1-28. https://doi.org/10.1186/1475-925X-12-94 DOI: https://doi.org/10.1186/1475-925X-12-94
Liu, B., Ling, S. F., & Gribonoval, R. (2002). Bearing failure detection using matching pursuit. NDT&E International, 35, 255–262. DOI: https://doi.org/10.1016/S0963-8695(01)00063-9
Mallat, S., & Zhang, Z. (1993). Matching pursuit with time-frequency dictionaries. IEEE Trans On Signal Processing, 41, 3397–3415. https://doi.org/10.1109/78.258082 DOI: https://doi.org/10.1109/78.258082
Nguyen-Schafer, H. (2016). Computational Design of Rolling Bearings. Springer. https://doi.org/10.1007/978-3-319-27131-6 DOI: https://doi.org/10.1007/978-3-319-27131-6
Tang, H. F., Chen, J., & Dong, G. M. (2012). Signal complexity analysis for fault diagnosis of rolling element bearing based on matching pursuit. Journal of Vibration and Control, 18, 671–683. https://doi.org/10.1177/1077546311405369 DOI: https://doi.org/10.1177/1077546311405369
Yan, R., Gao, R. X., & Chen, X. (2014). Wavelets for fault diagnosis of rotary machines: A review with applications. Signal Processing, 96, 1–15. https://doi.org/10.1016/j.sigpro.2013.04.015 DOI: https://doi.org/10.1016/j.sigpro.2013.04.015
Article Details
Abstract views: 246
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
