MATCHING PURSUIT ALGORITHM IN ASSESSING THE STATE OF ROLLING BEARINGS

Kamil JONAK

k.jonak@pollub.pl
Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin (Poland)

Paweł KRUKOW


Medical University of Lublin, Głuska 2, 20-439 Lublin (Poland)

Abstract

In this paper the results of Matching Pursuit (MP) Octave algorithm applied to noise, vibration and harness (NVH) diagnosis of rolling bearings are presented. For this purpose two bearings in different condition state were examined. The object of the analysis was to calculate and present which energy error values of MP algorithm give the most accuracy results for different changes in bearing structures and also how energy values spread in time-frequency domain for chosen energy error value.


Keywords:

matching pursuit, bearing faults, energy error

Cempel, C. (1989). Wibroakustyka Stosowana. Warszawa: PWN.
  Google Scholar

Chandra, H. N., & Sekhar, A. S. (2016). Fault detection in rotor bearing systems using time frequency techniques. Mechanical Systems and Signal Processing, 72–73, 105–133. https://doi.org/10.1016/j.ymssp.2015.11.013
DOI: https://doi.org/10.1016/j.ymssp.2015.11.013   Google Scholar

Chandran, S., Mishra, A., Shirhatti, V., & Ray, S. (2016). Comparison of Matching Pursuit Algorithm with Other Signal Processing Techniques for Computation of the Time-Frequency Power Spectrum of Brain Signals. The Journal of Neuroscience, 36(12), 3399–3408. https://doi.org/10.1523/JNEUROSCI.3633-15.2016
DOI: https://doi.org/10.1523/JNEUROSCI.3633-15.2016   Google Scholar

Cui, L., Wu, N., Ma, C., & Wang, H. (2016). Quantitative fault analysis of roller bearings based on a novel matching pursuit method with a new step-impulse dictionary. Mechanical Systems and Signal Processing, 68-69, 34–43. https://doi.org/10.1016/j.ymssp.2015.05.032
DOI: https://doi.org/10.1016/j.ymssp.2015.05.032   Google Scholar

Cui, L., Gong, X., Zhang, J., & Wang, H. (2016). Double-dictionary matching pursuit for fault extent evaluation of rolling bearing based on the Lempel-Ziv complexity. Journal of Sound and Vibration, 385, 372–388. https://doi.org/10.1016/j.jsv.2016.09.008
DOI: https://doi.org/10.1016/j.jsv.2016.09.008   Google Scholar

Cui, L., Wang, J., & Lee, S. (2014). Matching pursuit of and adaptive impulse dictionary for bearing fault diagnosis. Journal of Sound and Vibration, 333, 2840–2862. https://doi.org/10.1016/j.jsv.2013.12.029
DOI: https://doi.org/10.1016/j.jsv.2013.12.029   Google Scholar

Durka, P. J., Ircha, M., & Blinowska, K. J. (2001). Stochastic Time-Frequency Dictionaries for Matching Pursuit. IEEE Transactions of Signal Processing, 49, 507–510. https://doi.org/10.1109/78.905866
DOI: https://doi.org/10.1109/78.905866   Google Scholar

Gao, R. X., & Yan, R. (2011). Wavelets: Theory and Applications for Manufacturing. Springer. https://doi.org/10.1007/978-1-4419-1545-0_2
DOI: https://doi.org/10.1007/978-1-4419-1545-0_2   Google Scholar

He, G., Ding, K., & Lin, H. (2016). Fault feature of rolling element bearings using sparse representation. Journal of Sound and Vibration, 366, 514–527. https://doi.org/10.1016/j.jsv.2015.12.020
DOI: https://doi.org/10.1016/j.jsv.2015.12.020   Google Scholar

Kuś, R., Różański, P. T., & Durka, P. J. (2013). Multivariate matching pursuit in optimal Gabor dictionaries: theroy and software with interface for EEG/MEG via Svarog. Biomedical Engineering Online, 12, 1-28. https://doi.org/10.1186/1475-925X-12-94
DOI: https://doi.org/10.1186/1475-925X-12-94   Google Scholar

Liu, B., Ling, S. F., & Gribonoval, R. (2002). Bearing failure detection using matching pursuit. NDT&E International, 35, 255–262.
DOI: https://doi.org/10.1016/S0963-8695(01)00063-9   Google Scholar

Mallat, S., & Zhang, Z. (1993). Matching pursuit with time-frequency dictionaries. IEEE Trans On Signal Processing, 41, 3397–3415. https://doi.org/10.1109/78.258082
DOI: https://doi.org/10.1109/78.258082   Google Scholar

Nguyen-Schafer, H. (2016). Computational Design of Rolling Bearings. Springer. https://doi.org/10.1007/978-3-319-27131-6
DOI: https://doi.org/10.1007/978-3-319-27131-6   Google Scholar

Tang, H. F., Chen, J., & Dong, G. M. (2012). Signal complexity analysis for fault diagnosis of rolling element bearing based on matching pursuit. Journal of Vibration and Control, 18, 671–683. https://doi.org/10.1177/1077546311405369
DOI: https://doi.org/10.1177/1077546311405369   Google Scholar

Yan, R., Gao, R. X., & Chen, X. (2014). Wavelets for fault diagnosis of rotary machines: A review with applications. Signal Processing, 96, 1–15. https://doi.org/10.1016/j.sigpro.2013.04.015
DOI: https://doi.org/10.1016/j.sigpro.2013.04.015   Google Scholar

Download


Published
2017-06-30

Cited by

JONAK, K., & KRUKOW, P. . (2017). MATCHING PURSUIT ALGORITHM IN ASSESSING THE STATE OF ROLLING BEARINGS. Applied Computer Science, 13(2), 61–71. https://doi.org/10.23743/acs-2017-14

Authors

Kamil JONAK 
k.jonak@pollub.pl
Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin Poland

Authors

Paweł KRUKOW 

Medical University of Lublin, Głuska 2, 20-439 Lublin Poland

Statistics

Abstract views: 164
PDF downloads: 9


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.