NUMERICAL SIMULATIONS OF SANDWICH STRUCTURES UNDER LATERAL COMPRESSION
Quirino ESTRADA
quirino.estrada@uacj.mxUniversidad Autónoma de Ciudad Juárez, Instituto de Ingeniería y Tecnología, Av. Plutarco Elías Calles, Fovissste Chamizal, 32310, Ciudad Juárez, Chihuahua (Mexico)
Dariusz SZWEDOWICZ
Centro Nacional de Investigación y Desarrollo Tecnológico/TecNM, Departamento de Ingeniería Mecánica, Interior Internado Palmira, 62490, Cuernavaca, Morelos (Mexico)
Julio C. VERGARA
Centro Nacional de Investigación y Desarrollo Tecnológico/TecNM, Departamento de Ingeniería Mecánica, Interior Internado Palmira, 62490, Cuernavaca, Morelos (Mexico)
José SOLIS
Instituto Tecnológico de Tlalnepantla, División de Estudios de Posgrado e Investigación, Av. Instituto Tecnológico, la Comunidad, 54070 Tlalnepantla de Baz, Estado de Mexico (Mexico)
Miguel A. PAREDES
Instituto Tecnológico de Tlalnepantla, División de Estudios de Posgrado e Investigación, Av. Instituto Tecnológico, la Comunidad, 54070 Tlalnepantla de Baz, Estado de México (Mexico)
Lara WIEBE
Universidad Autónoma de Ciudad Juárez, Instituto de Ingeniería y Tecnología, Av. Plutarco Elías Calles, Fovissste Chamizal, 32310, Ciudad Juárez, Chihuahua (Mexico)
Jesús M. SILVA
Universidad Autónoma de Ciudad Juárez, Instituto de Ingeniería y Tecnología, Av. Plutarco Elías Calles, Fovissste Chamizal, 32310, Ciudad Juárez, Chihuahua (Mexico)
Abstract
The current paper analyzes the effect of the cross-section on the energy absorption capabilities of sandwich structures under compressive loads. For this purpose, several cross-section including triangular, square, hexagonal and circular shapes were analyzed using Abaqus software. According to the results the hexagonal shape is the most favorable cross-section to increase the crashworthiness performance of the structures up to 700% of CFE with respect to the square arrangement.
Keywords:
Sandwich structures, crashworthiness, finite element methodReferences
Crupi, V., Epasto, G., & Guglielmino, E. (2013). Comparison of aluminium sandwiches for lightweight ship structures: Honeycomb vs. foam. Marine Structures, 30, 74–96. https://doi.org/10.1016/J.MARSTRUC.2012.11.002
DOI: https://doi.org/10.1016/j.marstruc.2012.11.002
Google Scholar
Estrada, Q., Szwedowicz, D., Rodriguez-Mendez, A., Elías-Espinosa, M., Silva-Aceves, J., BedollaHernández, J., & Gómez-Vargas, O. A. (2019). Effect of radial clearance and holes as crush initiators on the crashworthiness performance of bitubular profiles. Thin-Walled Structures, 140, 43–59. https://doi.org/10.1016/J.TWS.2019.02.039
DOI: https://doi.org/10.1016/j.tws.2019.02.039
Google Scholar
Fan, H., Hong, W., Sun, F., Xu, Y., & Jin, F. (2015). Lateral compression behaviors of thin-walled equilateral triangular tubes. International Journal of Steel Structures, 15(4), 785–795. https://doi.org/10.1007/s13296-015-1202-x.
DOI: https://doi.org/10.1007/s13296-015-1202-x
Google Scholar
Goel, M. D. (2015). Deformation, energy absorption and crushing behavior of single-, double- and multi-wall foam filled square and circular tubes. Thin-Walled Structures, 90, 1–11. https://doi.org/10.1016/J.TWS.2015.01.004
DOI: https://doi.org/10.1016/j.tws.2015.01.004
Google Scholar
Ivañez, I., Fernandez-Cañadas, L. M., & Sanchez-Saez, S. (2017). Compressive deformation and energy-absorption capability of aluminium honeycomb core. Composite Structures, 174, 123–133. https://doi.org/10.1016/J.COMPSTRUCT.2017.04.056
DOI: https://doi.org/10.1016/j.compstruct.2017.04.056
Google Scholar
Khan, M. K., Baig, T., & Mirza, S. (2012). Experimental investigation of in-plane and out-of-plane crushing of aluminum honeycomb. Materials Science and Engineering: A, 539, 135–142. https://doi.org/10.1016/J.MSEA.2012.01.070
DOI: https://doi.org/10.1016/j.msea.2012.01.070
Google Scholar
Li, T., & Wang, L. (2017). Bending behavior of sandwich composite structures with tunable 3D-printed core materials. Composite Structures, 175, 46–57. https://doi.org/10.1016/J.COMPSTRUCT.2017.05.001
DOI: https://doi.org/10.1016/j.compstruct.2017.05.001
Google Scholar
Liu, Q., Fu, J., Wang, J., Ma, J., Chen, H., Li, Q., & Hui, D. (2017). Axial and lateral crushing responses of aluminum honeycombs filled with EPP foam. Composites Part B: Engineering, 130, 236–247. https://doi.org/10.1016/J.COMPOSITESB.2017.07.041
DOI: https://doi.org/10.1016/j.compositesb.2017.07.041
Google Scholar
Smerd, R., Winkler, S., Salisbury, C., Worswick, M., Lloyd, D., & Finn, M. (2005). High strain rate tensile testing of automotive aluminum alloy sheet. International Journal of Impact Engineering, 32(1–4), 541–560. https://doi.org/10.1016/J.IJIMPENG.2005.04.013
DOI: https://doi.org/10.1016/j.ijimpeng.2005.04.013
Google Scholar
Yang, X., Sun, Y., Yang, J., & Pan, Q. (2018). Out-of-plane crashworthiness analysis of bio-inspired aluminum honeycomb patterned with horseshoe mesostructure. Thin-Walled Structures, 125, 1–11. https://doi.org/10.1016/J.TWS.2018.01.014
DOI: https://doi.org/10.1016/j.tws.2018.01.014
Google Scholar
Yin, H., Huang, X., Scarpa, F., Wen, G., Chen, Y., & Zhang, C. (2018). In-plane crashworthiness of bio-inspired hierarchical honeycombs. Composite Structures, 192, 516–527. https://doi.org/10.1016/J.COMPSTRUCT.2018.03.050
DOI: https://doi.org/10.1016/j.compstruct.2018.03.050
Google Scholar
Wang, Z., Li, Z., & Zhang, X. (2016). Bending resistance of thin-walled multi-cell square tubes. Thin-Walled Structures, 107, 287–299. https://doi.org/10.1016/J.TWS.2016.06.017
DOI: https://doi.org/10.1016/j.tws.2016.06.017
Google Scholar
Zhang, Y., Xu, X., Wang, J., Chen, T., & Wang, C. H. (2018). Crushing analysis for novel bio-inspired hierarchical circular structures subjected to axial load. International Journal of Mechanical Sciences, 140, 407–431. https://doi.org/10.1016/J.IJMECSCI.2018.03.015
DOI: https://doi.org/10.1016/j.ijmecsci.2018.03.015
Google Scholar
Zhang, X., Zhang, H., & Wang, Z. (2016). Bending collapse of square tubes with variable thickness. International Journal of Mechanical Sciences, 106, 107–116. https://doi.org/10.1016/J.IJMECSCI.2015.12.006
DOI: https://doi.org/10.1016/j.ijmecsci.2015.12.006
Google Scholar
Zhu, H., Qin, C., Wang, J. Q., & Qi, F. J. (2011). Characterization and Simulation of Mechanical Behavior of 6063 Aluminum Alloy Thin-Walled Tubes. Advanced Materials Research, 197–198, 1500–1508. https://doi.org/10.4028/www.scientific.net/AMR.197-198.1500
DOI: https://doi.org/10.4028/www.scientific.net/AMR.197-198.1500
Google Scholar
Authors
Quirino ESTRADAquirino.estrada@uacj.mx
Universidad Autónoma de Ciudad Juárez, Instituto de Ingeniería y Tecnología, Av. Plutarco Elías Calles, Fovissste Chamizal, 32310, Ciudad Juárez, Chihuahua Mexico
Authors
Dariusz SZWEDOWICZCentro Nacional de Investigación y Desarrollo Tecnológico/TecNM, Departamento de Ingeniería Mecánica, Interior Internado Palmira, 62490, Cuernavaca, Morelos Mexico
Authors
Julio C. VERGARACentro Nacional de Investigación y Desarrollo Tecnológico/TecNM, Departamento de Ingeniería Mecánica, Interior Internado Palmira, 62490, Cuernavaca, Morelos Mexico
Authors
José SOLISInstituto Tecnológico de Tlalnepantla, División de Estudios de Posgrado e Investigación, Av. Instituto Tecnológico, la Comunidad, 54070 Tlalnepantla de Baz, Estado de Mexico Mexico
Authors
Miguel A. PAREDESInstituto Tecnológico de Tlalnepantla, División de Estudios de Posgrado e Investigación, Av. Instituto Tecnológico, la Comunidad, 54070 Tlalnepantla de Baz, Estado de México Mexico
Authors
Lara WIEBEUniversidad Autónoma de Ciudad Juárez, Instituto de Ingeniería y Tecnología, Av. Plutarco Elías Calles, Fovissste Chamizal, 32310, Ciudad Juárez, Chihuahua Mexico
Authors
Jesús M. SILVAUniversidad Autónoma de Ciudad Juárez, Instituto de Ingeniería y Tecnología, Av. Plutarco Elías Calles, Fovissste Chamizal, 32310, Ciudad Juárez, Chihuahua Mexico
Statistics
Abstract views: 145PDF downloads: 30
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Most read articles by the same author(s)
- Elvis COUTIÑO-MORENO, Quirino ESTRADA, Daniel MALDONADO-ONOFRE, Alejandro RODRIGUEZ-MENDEZ, Julio GOMEZ-GIRON, RESOLUTION IN THE 3D MODELING OF OBJECTS FOR ADDITIVE MANUFACTURING AND REVERSE ENGINEERING – SHUTTER EFFECT , Applied Computer Science: Vol. 17 No. 1 (2021)
Similar Articles
- Robert KARPIŃSKI, Anna MACHROWSKA, Marcin MACIEJEWSKI, APPLICATION OF ACOUSTIC SIGNAL PROCESSING METHODS IN DETECTING DIFFERENCES BETWEEN OPEN AND CLOSED KINEMATIC CHAIN MOVEMENT FOR THE KNEE JOINT , Applied Computer Science: Vol. 15 No. 1 (2019)
- Elmehdi BENMALEK, Jamal EL MHAMDI, Abdelilah JILBAB, Atman JBARI, A COUGH-BASED COVID-19 DETECTION SYSTEM USING PCA AND MACHINE LEARNING CLASSIFIERS , Applied Computer Science: Vol. 18 No. 4 (2022)
- Sylwester KORGA, Marcin BARSZCZ, Krzysztof DZIEDZIC, DEVELOPMENT OF SOFTWARE FOR IDENTIFICATION OF FILAMENTS USED IN 3D PRINTING TECHNOLOGY , Applied Computer Science: Vol. 15 No. 1 (2019)
- Konrad BIERCEWICZ, Mariusz BORAWSKI, Anna BORAWSKA, Jarosław DUDA, DETERMINING THE DEGREE OF PLAYER ENGAGEMENT IN A COMPUTER GAME WITH ELEMENTS OF A SOCIAL CAMPAIGN USING COGNITIVE NEUROSCIENCE TECHNIQUES , Applied Computer Science: Vol. 18 No. 4 (2022)
- Grzegorz SUCHANEK, Roman FILIPEK, COMPUTATIONAL FLUID DYNAMICS (CFD) AIDED DESIGN OF A MULTI-ROTOR FLYING ROBOT FOR LOCATING SOURCES OF PARTICULATE MATTER POLLUTION , Applied Computer Science: Vol. 18 No. 3 (2022)
- Andrij MILENIN, PARALLEL SOLUTION OF THERMOMECHANICAL INVERSE PROBLEMS FOR LASER DIELESS DRAWING OF ULTRA-THIN WIRE , Applied Computer Science: Vol. 18 No. 3 (2022)
- Daniel HALIKOWSKI, Justyna PATALAS-MALISZEWSKA, Małgorzata SKRZESZEWSKA, A MODEL FOR ASSESSING THE LEVEL OF AUTOMATION OF A MAINTENANCE DEPARTMENT USING ARTIFICIAL NEURAL NETWORK , Applied Computer Science: Vol. 14 No. 4 (2018)
You may also start an advanced similarity search for this article.