CNN AND LSTM FOR THE CLASSIFICATION OF PARKINSON'S DISEASE BASED ON THE GTCC AND MFCC
Article Sidebar
Open full text
Issue Vol. 19 No. 2 (2023)
-
CNN AND LSTM FOR THE CLASSIFICATION OF PARKINSON'S DISEASE BASED ON THE GTCC AND MFCC
Nouhaila BOUALOULOU, Taoufiq BELHOUSSINE DRISSI, Benayad NSIRI1-24
-
MASK FACE INPAINTING BASED ON IMPROVED GENERATIVE ADVERSARIAL NETWORK
Qingyu Liu, Roben A. Juanatas25-42
-
APPLICATION OF THE REAL-TIME FAN SCHEDULING IN THE EXPLORATION-EXPLOITATION TO OPTIMIZE MINIMUM FUNCTIONS OBJECTIVES
Mariano LARIOS, Perfecto M. QUINTERO-FLORES , Mario ANZURES-GARCÍA , Miguel CAMACHO-HERNANDEZ43-54
-
APPLICATION OF GENETIC ALGORITHMS TO THE TRAVELING SALESMAN PROBLEM
Tomasz Sikora, Wanda Gryglewicz-Kacerka55-62
-
THE POTENTIAL FOR REAL-TIME TESTING OF HIGH FREQUENCY TRADING STRATEGIES THROUGH A DEVELOPED TOOL DURING VOLATILE MARKET CONDITIONS
Mantas Vaitonis, Konstantinas Korovkinas63-81
-
NAVIGATION STRATEGY FOR MOBILE ROBOT BASED ON COMPUTER VISION AND YOLOV5 NETWORK IN THE UNKNOWN ENVIRONMENT
Thanh-Lam BUI, Ngoc-Tien TRAN82-95
-
A NEW METHOD FOR GENERATING VIRTUAL MODELS OF NONLINEAR HELICAL SPRINGS BASED ON A RIGOROUS MATHEMATICAL MODEL
Krzysztof Michalczyk, Mariusz Warzecha, Robert Baran96-111
-
HYBRID FEATURE SELECTION AND SUPPORT VECTOR MACHINE FRAMEWORK FOR PREDICTING MAINTENANCE FAILURES
Mouna TARIK, Ayoub MNIAI, Khalid JEBARI112-124
-
CLASSIFICATION OF PARKINSON'S DISEASE IN BRAIN MRI IMAGES USING DEEP RESIDUAL CONVOLUTIONAL NEURAL NETWORK
Puppala Praneeth, Majety Sathvika, Vivek Kommareddy, Madala Sarath, Saran Mallela, Koneru Suvarna Vani, Prasun Chkrabarti125-146
-
EXPLOITING BERT FOR MALFORMED SEGMENTATION DETECTION TO IMPROVE SCIENTIFIC WRITINGS
Abdelrahman Halawa, Shehab Gamalel-Din; Abdurrahman Nasr126-141
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
Main Article Content
DOI
Authors
nouhailaboualoulou21@gmail.com
taoufiq_belhoussine_drissi@yahoo.fr
Abstract
Parkinson's disease is a recognizable clinical syndrome with a variety of causes and clinical presentations; it represents a rapidly growing neurodegenerative disorder. Since about 90 percent of Parkinson's disease sufferers have some form of early speech impairment, recent studies on tele diagnosis of Parkinson's disease have focused on the recognition of voice impairments from vowel phonations or the subjects' discourse. In this paper, we present a new approach for Parkinson's disease detection from speech sounds that are based on CNN and LSTM and uses two categories of characteristics Mel Frequency Cepstral Coefficients (MFCC) and Gammatone Cepstral Coefficients (GTCC) obtained from noise-removed speech signals with comparative EMD-DWT and DWT-EMD analysis. The proposed model is divided into three stages. In the first step, noise is removed from the signals using the EMD-DWT and DWT-EMD methods. In the second step, the GTCC and MFCC are extracted from the enhanced audio signals. The classification process is carried out in the third step by feeding these features into the LSTM and CNN models, which are designed to define sequential information from the extracted features. The experiments are performed using PC-GITA and Sakar datasets and 10-fold cross validation method, the highest classification accuracy for the Sakar dataset reached 100% for both EMD-DWT-GTCC-CNN and DWT-EMD-GTCC-CNN, and for the PC-GITA dataset, the accuracy is reached 100% for EMD-DWT-GTCC-CNN and 96.55% for DWT-EMD-GTCC-CNN. The results of this study indicate that the characteristics of GTCC are more appropriate and accurate for the assessment of PD than MFCC.
Keywords:
References
Ali, Z., Elamvazuthi, I., Alsulaiman, M., & Muhammad, G. (2016). Automatic Voice Pathology Detection With Running Speech by Using Estimation of Auditory Spectrum and Cepstral Coefficients Based on the All-Pole Model. Journal of Voice, 30(6), 757.e7-757.e19. https://doi.org/10.1016/j.jvoice.2015.08.010 DOI: https://doi.org/10.1016/j.jvoice.2015.08.010
Altuve, M., Suárez, L., & Ardila, J. (2020). Fundamental heart sounds analysis using improved complete ensemble EMD with adaptive noise. Biocybernetics and Biomedical Engineering, 40(1), 426–439. https://doi.org/10.1016/j.bbe.2019.12.007 DOI: https://doi.org/10.1016/j.bbe.2019.12.007
Dash, T. K., Mishra, S., Panda, G., & Satapathy, S. C. (2021). Detection of COVID-19 from speech signal using bio-inspired based cepstral features. Pattern Recognition, 117. https://doi.org/10.1016/j.patcog.2021.107999 DOI: https://doi.org/10.1016/j.patcog.2021.107999
Davis, S., & Mermelstein, P. (1980). Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences. IEEE Transactions on Acoustics, Speech, and Signal Processing, 28(4), 357–366. https://doi.org/10.1109/TASSP.1980.1163420 DOI: https://doi.org/10.1109/TASSP.1980.1163420
Demir, F., Siddique, K., Alswaitti, M., Demir, K., & Sengur, A. (2022). A Simple and Effective Approach Based on a Multi-Level Feature Selection for Automated Parkinson’s Disease Detection. Journal of Personalized Medicine, 12(1). https://doi.org/10.3390/jpm12010055 DOI: https://doi.org/10.3390/jpm12010055
Drissi, T. B., Zayrit, S., Nsiri, B., & Ammoummou, A. (2019). Diagnosis of Parkinson’s disease based on wavelet transform and Mel Frequency Cepstral Coefficients. International Journal of Advanced Computer Science and Applications, 10(3), 125–132. https://doi.org/10.14569/IJACSA.2019.0100315 DOI: https://doi.org/10.14569/IJACSA.2019.0100315
Er, M. B., Isik, E., & Isik, I. (2021). Parkinson’s detection based on combined CNN and LSTM using enhanced speech signals with Variational mode decomposition. Biomedical Signal Processing and Control, 70. https://doi.org/10.1016/j.bspc.2021.103006 DOI: https://doi.org/10.1016/j.bspc.2021.103006
Grossmann, A., Morlet, J., & Paul, T. (1985). Transforms associated to square integrable group representations. I. General results. Journal of Mathematical Physics, 26(10), 2473–2479. https://doi.org/10.1063/1.526761 DOI: https://doi.org/10.1063/1.526761
Hammami, I., Salhi, L., & Labidi, S. (2020). Voice Pathologies Classification and Detection Using EMD-DWT Analysis Based on Higher Order Statistic Features. IRBM, 41(3), 161–171. https://doi.org/10.1016/j.irbm.2019.11.004 DOI: https://doi.org/10.1016/j.irbm.2019.11.004
Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N.-C., Tung, C. C., & Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454(1971), 903–995. https://doi.org/10.1098/rspa.1998.0193 DOI: https://doi.org/10.1098/rspa.1998.0193
Karan, B., Sahu, S. S., & Mahto, K. (2020). Parkinson disease prediction using intrinsic mode function based features from speech signal. Biocybernetics and Biomedical Engineering, 40(1), 249–264. https://doi.org/10.1016/j.bbe.2019.05.005 DOI: https://doi.org/10.1016/j.bbe.2019.05.005
Karan, B., Sahu, S. S., Orozco-Arroyave, J. R., & Mahto, K. (2020). Hilbert spectrum analysis for automatic detection and evaluation of Parkinson’s speech. Biomedical Signal Processing and Control, 61, 102050. https://doi.org/10.1016/j.bspc.2020.102050 DOI: https://doi.org/10.1016/j.bspc.2020.102050
Karan, B., & Sekhar Sahu, S. (2021). An improved framework for Parkinson’s disease prediction using Variational Mode Decomposition-Hilbert spectrum of speech signal. Biocybernetics and Biomedical Engineering, 41(2), 717–732. https://doi.org/10.1016/j.bbe.2021.04.014 DOI: https://doi.org/10.1016/j.bbe.2021.04.014
Kethireddy, R., Kadiri, S. R., & Gangashetty, S. V. (2022). Exploration of temporal dynamics of frequency domain linear prediction cepstral coefficients for dialect classification. Applied Acoustics, 188. https://doi.org/10.1016/j.apacoust.2021.108553 DOI: https://doi.org/10.1016/j.apacoust.2021.108553
López-Pabón, F. O., Arias-Vergara, T., & Orozco-Arroyave, J. R. (2020). Cepstral Analysis and Hilbert-Huang Transform for Automatic Detection of Parkinson’s Disease. TecnoLógicas, 23(47), 93–108. https://doi.org/10.22430/22565337.1401 DOI: https://doi.org/10.22430/22565337.1401
Mondal, A., Banerjee, P., & Tang, H. (2018). A novel feature extraction technique for pulmonary sound analysis based on EMD. Computer Methods and Programs in Biomedicine, 159, 199–209. https://doi.org/10.1016/j.cmpb.2018.03.016 DOI: https://doi.org/10.1016/j.cmpb.2018.03.016
Moro-Velázquez, L., Gómez-García, J. A., & Godino-Llorente, J. I. (2016). Voice pathology detection using modulation spectrum-optimized metrics. Frontiers in Bioengineering and Biotechnology, 4(JAN). https://doi.org/10.3389/fbioe.2016.00001 DOI: https://doi.org/10.3389/fbioe.2016.00001
Nagarajan, S., Nettimi, S. S. S., Kumar, L. S., Nath, M. K., & Kanhe, A. (2020). Speech emotion recognition using cepstral features extracted with novel triangular filter banks based on bark and ERB frequency scales. Digital Signal Processing, 104, 102763. https://doi.org/10.1016/j.dsp.2020.102763 DOI: https://doi.org/10.1016/j.dsp.2020.102763
Najnin, S., & Banerjee, B. (2019). Speech recognition using cepstral articulatory features. Speech Communication, 107, 26–37. https://doi.org/10.1016/j.specom.2019.01.002 DOI: https://doi.org/10.1016/j.specom.2019.01.002
Nouhaila, B., Taoufiq, B. D., & Benayad, N. (2022). An Intelligent Approach based on the Combination of the Discrete Wavelet Transform, Delta Delta MFCC for Parkinson’s Disease Diagnosis. International Journal of Advanced Computer Science and Applications, 13(4), 562–571. https://doi.org/10.14569/IJACSA.2022.0130466 DOI: https://doi.org/10.14569/IJACSA.2022.0130466
Orozco-Arroyave, J. R., Arias-Londõ No, J. D., Vargas-Bonilla, J. F., González-Rátiva, M. C., & Nöth, E. (n.d.). New Spanish speech corpus database for the analysis of people suffering from Parkinson’s disease.
Oyinloye, B. E., Iwaloye, O., & Ajiboye, B. O. (2021). Polypharmacology of Gongronema latifolium leaf secondary metabolites against protein kinases implicated in Parkinson’s disease and Alzheimer’s disease. Scientific African, 12. https://doi.org/10.1016/j.sciaf.2021.e00826 DOI: https://doi.org/10.1016/j.sciaf.2021.e00826
Qin, J., Liu, T., Wang, Z., Zou, Q., Chen, L., & Hong, C. (2022). Speech Recognition for Parkinson’s Disease Based on Improved Genetic Algorithm and Data Enhancement Technology (pp. 273–286). https://doi.org/10.1007/978-981-19-5194-7_21 DOI: https://doi.org/10.1007/978-981-19-5194-7_21
Quan, C., Ren, K., Luo, Z., Chen, Z., & Ling, Y. (2022). End-to-end deep learning approach for Parkinson’s disease detection from speech signals. Biocybernetics and Biomedical Engineering, 42(2), 556–574. https://doi.org/10.1016/j.bbe.2022.04.002 DOI: https://doi.org/10.1016/j.bbe.2022.04.002
Sakar, B. E., Isenkul, M. E., Sakar, C. O., Sertbas, A., Gurgen, F., Delil, S., Apaydin, H., & Kursun, O. (2013). Collection and analysis of a Parkinson speech dataset with multiple types of sound recordings. IEEE Journal of Biomedical and Health Informatics, 17(4), 828–834. https://doi.org/10.1109/JBHI.2013.2245674 DOI: https://doi.org/10.1109/JBHI.2013.2245674
Sakar, C. O., Serbes, G., Gunduz, A., Tunc, H. C., Nizam, H., Sakar, B. E., Tutuncu, M., Aydin, T., Isenkul, M. E., & Apaydin, H. (2019). A comparative analysis of speech signal processing algorithms for Parkinson’s disease classification and the use of the tunable Q-factor wavelet transform. Applied Soft Computing Journal, 74, 255–263. https://doi.org/10.1016/j.asoc.2018.10.022 DOI: https://doi.org/10.1016/j.asoc.2018.10.022
Soumaya, Z., Drissi Taoufiq, B., Benayad, N., Yunus, K., & Abdelkrim, A. (2021). The detection of Parkinson disease using the genetic algorithm and SVM classifier. Applied Acoustics, 171, 107528. https://doi.org/10.1016/j.apacoust.2020.107528 DOI: https://doi.org/10.1016/j.apacoust.2020.107528
Soumaya, Z., Taoufiq, B., Benayad, N., Achraf, B., & Ammoumou, A. (2020). A hybrid method for the diagnosis and classifying parkinson’s patients based on time–frequency domain properties and K-nearest neighbor. Journal of Medical Signals & Sensors, 10(1), 60. https://doi.org/10.4103/jmss.JMSS_61_18 DOI: https://doi.org/10.4103/jmss.JMSS_61_18
Srivastava, N., Hinton, G., Krizhevsky, A., & Salakhutdinov, R. (2014). Dropout: A Simple Way to Prevent Neural Networks from Overfitting. In Journal of Machine Learning Research (Vol. 15).
Taoufiq, B. D., Soumaya, Z., Benayad, N., & Nouhaila, B. (2022). Cepstral Coefficient Extraction using the MFCC with the Discrete Wavelet Transform for the Parkinson’s Disease Diagnosis. International Journal of Engineering Trends and Technology, 70(7), 283–290. https://doi.org/10.14445/22315381/IJETT-V70I7P229 DOI: https://doi.org/10.14445/22315381/IJETT-V70I7P229
Terriza, M., Navarro, J., Retuerta, I., Alfageme, N., San-Segundo, R., Kontaxakis, G., Garcia-Martin, E., Marijuan, P. C., & Panetsos, F. (2022). Use of Laughter for the Detection of Parkinson’s Disease: Feasibility Study for Clinical Decision Support Systems, Based on Speech Recognition and Automatic Classification Techniques. International Journal of Environmental Research and Public Health, 19(17). https://doi.org/10.3390/ijerph191710884 DOI: https://doi.org/10.3390/ijerph191710884
Valero, X., & Alias, F. (2012). Gammatone Cepstral Coefficients: Biologically Inspired Features for Non-Speech Audio Classification. IEEE Transactions on Multimedia, 14(6), 1684–1689. https://doi.org/10.1109/TMM.2012.2199972 DOI: https://doi.org/10.1109/TMM.2012.2199972
Yagnavajjula, M. K., Alku, P., Rao, K. S., & Mitra, P. (2022). Detection of Neurogenic Voice Disorders Using the Fisher Vector Representation of Cepstral Features. Journal of Voice. https://doi.org/10.1016/j.jvoice.2022.10.016 DOI: https://doi.org/10.1016/j.jvoice.2022.10.016
Zahid, L., Maqsood, M., Durrani, M. Y., Bakhtyar, M., Baber, J., Jamal, H., Mehmood, I., & Song, O.-Y. (2020). A Spectrogram-Based Deep Feature Assisted Computer-Aided Diagnostic System for Parkinson’s Disease. IEEE Access, 8, 35482–35495. https://doi.org/10.1109/ACCESS.2020.2974008 DOI: https://doi.org/10.1109/ACCESS.2020.2974008
Zhang, T., Zhang, Y., Sun, H., & Shan, H. (2021). Parkinson disease detection using energy direction features based on EMD from voice signal. Biocybernetics and Biomedical Engineering, 41(1), 127–141. https://doi.org/10.1016/j.bbe.2020.12.009 DOI: https://doi.org/10.1016/j.bbe.2020.12.009
Article Details
Abstract views: 764
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
