A COUGH-BASED COVID-19 DETECTION SYSTEM USING PCA AND MACHINE LEARNING CLASSIFIERS
Article Sidebar
Open full text
Issue Vol. 18 No. 4 (2022)
-
APPLICATION OF GILLESPIE ALGORITHM FOR SIMULATING EVOLUTION OF FITNESS OF MICROBIAL POPULATION
Jarosław GIL, Andrzej POLAŃSKI5-15
-
HOW MACHINE LEARNING ALGORITHMS ARE USED IN METEOROLOGICAL DATA CLASSIFICATION: A COMPARATIVE APPROACH BETWEEN DT, LMT, M5-MT, GRADIENT BOOSTING AND GWLM-NARX MODELS
Sheikh Amir FAYAZ, Majid ZAMAN, Muheet Ahmed BUTT, Sameer KAUL16-27
-
DETERMINING THE DEGREE OF PLAYER ENGAGEMENT IN A COMPUTER GAME WITH ELEMENTS OF A SOCIAL CAMPAIGN USING COGNITIVE NEUROSCIENCE TECHNIQUES
Konrad BIERCEWICZ, Mariusz BORAWSKI, Anna BORAWSKA, Jarosław DUDA28-52
-
ANALYSIS OF THE POSSIBILITY OF USING THE SINGULAR VALUE DECOMPOSITION IN IMAGE COMPRESSION
Edyta ŁUKASIK, Emilia ŁABUĆ53-67
-
PREDICTION OF THE COMPRESSIVE STRENGTH OF ENVIRONMENTALLY FRIENDLY CONCRETE USING ARTIFICIAL NEURAL NETWORK
Monika KULISZ, Justyna KUJAWSKA, Zulfiya AUBAKIROVA, Gulnaz ZHAIRBAEVA, Tomasz WAROWNY68-81
-
NUMERICAL AND EXPERIMENTAL ANALYSIS OF A CENTRIFUGAL PUMP WITH DIFFERENT ROTOR GEOMETRIES
Łukasz SEMKŁO, Łukasz GIERZ82-95
-
A COUGH-BASED COVID-19 DETECTION SYSTEM USING PCA AND MACHINE LEARNING CLASSIFIERS
Elmehdi BENMALEK, Jamal EL MHAMDI, Abdelilah JILBAB, Atman JBARI96-115
-
IDENTIFICATION OF THE IMPACT OF THE AVAILABILITY FACTOR ON THE EFFICIENCY OF PRODUCTION PROCESSES USING THE AHP AND FUZZY AHP METHODS
Piotr WITTBRODT, Iwona ŁAPUŃKA, Gulzhan BAYTIKENOVA, Arkadiusz GOLA, Alfiya ZAKIMOVA116-129
Archives
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
Main Article Content
DOI
Authors
Abstract
In 2019, the whole world is facing a health emergency due to the emergence of the coronavirus (COVID-19). About 223 countries are affected by the coronavirus. Medical and health services face difficulties to manage the disease, which requires a significant amount of health system resources. Several artificial intelligence-based systems are designed to automatically detect COVID-19 for limiting the spread of the virus. Researchers have found that this virus has a major impact on voice production due to the respiratory system's dysfunction. In this paper, we investigate and analyze the effectiveness of cough analysis to accurately detect COVID-19. To do so, we performed binary classification, distinguishing positive COVID patients from healthy controls. The records are collected from the Coswara Dataset, a crowdsourcing project from the Indian Institute of Science (IIS). After data collection, we extracted the MFCC from the cough records. These acoustic features are mapped directly to the Decision Tree (DT), k-nearest neighbor (kNN) for k equals to 3, support vector machine (SVM), and deep neural network (DNN), or after a dimensionality reduction using principal component analysis (PCA), with 95 percent variance or 6 principal components. The 3NN classifier with all features has produced the best classification results. It detects COVID-19 patients with an accuracy of 97.48 percent, 96.96 percent f1-score, and 0.95 MCC. Suggesting that this method can accurately distinguish healthy controls and COVID-19 patients.
Keywords:
References
Adhatrao, K., Gaykar, A., Dhawan, A., Jha, R., & Honrao, V. (2013). Predicting students' performance using ID3 and C4. 5 classification algorithms. arXiv preprint arXiv:1310.2071. DOI: https://doi.org/10.5121/ijdkp.2013.3504
Ai, T., Yang, Z., Hou, H., Zhan, C., Chen, C., Lv, W., Tao, Q., Sun, Z., & Xia, L. (2020). Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology, 296(2), E32-E40. https://doi.org/10.1148/radiol.2020200642 DOI: https://doi.org/10.1148/radiol.2020200642
Aly, M., Rahouma, K. H., & Ramzy, S. M. (2022). Pay attention to the speech: COVID-19 diagnosis using machine learning and crowdsourced respiratory and speech recordings. Alexandria Engineering Journal, 61(5), 3487–3500. https://doi.org/10.1016/j.aej.2021.08.070 DOI: https://doi.org/10.1016/j.aej.2021.08.070
Anuradha, C., & Velmurugan, T. (2014). A data mining based survey on student performance evaluation system. In 2014 IEEE International Conference on Computational Intelligence and Computing Research (pp. 1–4). IEEE. https://doi.org/10.1109/ICCIC.2014.7238389 DOI: https://doi.org/10.1109/ICCIC.2014.7238389
Anusuya, M. A., & Katti, S. K. (2010). Speech recognition by machine, a review. arXiv preprint arXiv:1001.2267.
Bengio, Y. (2009). Learning deep architectures for AI. Foundations and trends® in Machine Learning, 2(1), 1–127. DOI: https://doi.org/10.1561/2200000006
Benmalek, E., Elmhamdi, J., & Jilbab, A. (2021). Comparing CT scan and chest X-ray imaging for COVID-19 diagnosis. Biomedical Engineering Advances, 1, 100003. https://doi.org/10.1016/j.bea.2021.100003 DOI: https://doi.org/10.1016/j.bea.2021.100003
Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. In Proceedings of the fifth annual workshop on Computational learning theory (pp. 144–152). The ACM Digital Library. DOI: https://doi.org/10.1145/130385.130401
Brown, C., Chauhan, J., Grammenos, A., Han, J., Hasthanasombat, A., Spathis, D., Xia, T., Cicuta, P., & Mascolo, C. (2020). Exploring automatic diagnosis of COVID-19 from crowdsourced respiratory sound data. arXiv preprint arXiv:2006.05919. DOI: https://doi.org/10.1145/3394486.3412865
Chaudhari, G., Jiang, X., Fakhry, A., Han, A., Xiao, J., Shen, S., & Khanzada, A. (2020). Virufy: Global applicability of crowdsourced and clinical datasets for AI detection of COVID-19 from cough. arXiv preprint arXiv:2011.13320.
Coppock, H., Gaskell, A., Tzirakis, P., Baird, A., Jones, L., & Schuller, B. (2021). End-to-end convolutional neural network enables COVID-19 detection from breath and cough audio: a pilot study. BMJ innovations, 7(2), 356–362. https://doi.org/10.1136/bmjinnov-2021-000668 DOI: https://doi.org/10.1136/bmjinnov-2021-000668
Fakhry, A., Jiang, X., Xiao, J., Chaudhari, G., Han, A., & Khanzada, A. (2021). Virufy: A multi-branch deep learning network for automated detection of COVID-19. arXiv preprint arXiv:2103.01806. DOI: https://doi.org/10.21437/Interspeech.2021-378
Han, J., Brown, C., Chauhan, J., Grammenos, A., Hasthanasombat, A., Spathis, D., Xia, T., Cicuta, P., & Mascolo, C. (2021). Exploring Automatic COVID-19 Diagnosis via voice and symptoms from Crowdsourced Data. In ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 8328–8332). IEEE. DOI: https://doi.org/10.1109/ICASSP39728.2021.9414576
Han, W., Chan, C. F., Choy, C. S., & Pun, K. P. (2006). An efficient MFCC extraction method in speech recognition. In 2006 IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 4). IEEE. DOI: https://doi.org/10.1109/ISCAS.2006.1692543
Indyk, P., & Motwani, R. (1998). Approximate nearest neighbors: towards removing the curse of dimensionality. In Proceedings of the thirtieth annual ACM symposium on Theory of computing (pp. 604–613). The ACM Digital Library. DOI: https://doi.org/10.1145/276698.276876
Ismail, M. A., Deshmukh, S., & Singh, R. (2021). Detection of COVID-19 through the analysis of vocal fold oscillations. In ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 1035–1039). IEEE. DOI: https://doi.org/10.1109/ICASSP39728.2021.9414201
Laguarta, J., Hueto, F., & Subirana, B. (2020). COVID-19 Artificial Intelligence Diagnosis using only Cough Recordings. In IEEE Open Journal of Engineering in Medicine and Biology (vol. 1, 275–281). IEEE. https://doi.org/10.1109/OJEMB.2020.3026928 DOI: https://doi.org/10.1109/OJEMB.2020.3026928
Li, L., Qin, L., Xu, Z., Yin, Y., Wang, X., Kong, B., Bai, J., Lu, Y., Fang, Z., Song, Q., Cao, K., Liu, D., Wang, G., Xu, Q., Fang, X., Zhang, S., Xia, J., & Xia, J. (2020). Using Artificial Intelligence to Detect COVID19 and Community-acquired Pneumonia Based on Pulmonary CT: Evaluation of the Diagnostic Accuracy. Radiology, 296(2), E65–E71. https://doi.org/10.1148/radiol.2020200905 DOI: https://doi.org/10.1148/radiol.2020200905
Muda, L., Begam, M., & Elamvazuthi, I. (2010). Voice recognition algorithms using mel frequency cepstral coefficient (MFCC) and dynamic time warping (DTW) techniques. arXiv preprint arXiv:1003.4083.
Nassif, A. B., Shahin, I., Attili, I., Azzeh, M., & Shaalan, K. (2019). Speech recognition using deep neural networks: A systematic review. IEEE access, 7, 19143–19165. https://doi.org/10.1109/ACCESS.2019.2896880 DOI: https://doi.org/10.1109/ACCESS.2019.2896880
Pahar, M., Klopper, M., Warren, R., & Niesler, T. (2021). COVID-19 cough classification using machine learning and global smartphone recordings. Computers in Biology and Medicine, 135, 104572. https://doi.org/10.1016/j.compbiomed.2021.104572 DOI: https://doi.org/10.1016/j.compbiomed.2021.104572
Pal, A., & Sankarasubbu, M. (2021). Pay attention to the cough: Early diagnosis of COVID-19 using interpretable symptoms embeddings with cough sound signal processing. In Proceedings of the 36th Annual ACM Symposium on Applied Computing (pp. 620–628). The ACM Digital Library. https://doi.org/10.1145/3412841.3441943 DOI: https://doi.org/10.1145/3412841.3441943
Pisner, D. A., & Schnyer, D. M. (2020). Support vector machine.In Machine learning (pp. 101–121). Academic Press. DOI: https://doi.org/10.1016/B978-0-12-815739-8.00006-7
Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1), 81–106. DOI: https://doi.org/10.1007/BF00116251
Sharma, N., Krishnan, P., Kumar, R., Ramoji, S., Chetupalli, S. R., Ghosh, P. K., & Ganapathy, S. (2020).
Coswara--a database of breathing, cough, and voice sounds for COVID-19 diagnosis. arXiv preprintarXiv:2005.10548.
Singh, H., & Bathla, A. K. (2013). A survey on speech recognition. International Journal of Advanced Research in Computer Engineering & Technology, 2(6), 2186–2189.
Weng, L. M., Su, X., & Wang, X. Q. (2021). Pain symptoms in patients with coronavirus disease (COVID-19): a literature review. Journal of Pain Research, 14, 147. https://doi.org/10.2147/JPR.S269206 DOI: https://doi.org/10.2147/JPR.S269206
Wu, X., Hui, H., Niu, M., Li, L., Wang, L., He, B., Yang, X., Li, L. Li, H., Tian, J., & Zha, Y. (2020). Deep learning-based multi-view fusion model for screening 2019 novel coronavirus pneumonia: a multicentre study. European Journal of Radiology, 128, 109041. https://doi.org/10.1016/j.ejrad.2020.109041 DOI: https://doi.org/10.1016/j.ejrad.2020.109041
Yang, Y., Yang, M., Shen, C., Wang, F., Yuan, J., Li, J., Zhang, M., Wang, Z., Xing, L. Wei, J., Peng, L., Wong, G., Zheng, H., Wu, W., Liao, M., Feng, K., Li, J., Yang, Q., Zhao, J., Zhang, Z., Liu, L., & Liu, Y. (2020). Evaluating the accuracy of different respiratory specimens in the laboratory diagnosis and monitoring the viral shedding of 2019-nCoV infections. MedRxiv. https://doi.org/10.1101/2020.02.11.20021493 DOI: https://doi.org/10.1101/2020.02.11.20021493
Zheng, F., Zhang, G., & Song, Z. (2001). Comparison of different implementations of MFCC. Journal of Computer science and Technology, 16(6), 582–589. https://doi.org/10.1007/BF02943243 DOI: https://doi.org/10.1007/BF02943243
Article Details
Abstract views: 519
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
