A COUGH-BASED COVID-19 DETECTION SYSTEM USING PCA AND MACHINE LEARNING CLASSIFIERS

Elmehdi BENMALEK

elmehdi.benmalek@um5s.net.ma
E2SN, ENSAM de Rabat, Mohammed V University in Rabat (Morocco)

Jamal EL MHAMDI


E2SN, ENSAM de Rabat, Mohammed V University in Rabat (Morocco)

Abdelilah JILBAB


E2SN, ENSAM de Rabat, Mohammed V University in Rabat, (Morocco)

Atman JBARI


E2SN, ENSAM de Rabat, Mohammed V University in Rabat (Morocco)

Abstract

In 2019, the whole world is facing a health emergency due to the emergence of the coronavirus (COVID-19). About 223 countries are affected by the coronavirus. Medical and health services face difficulties to manage the disease, which requires a significant amount of health system resources. Several artificial intelligence-based systems are designed to automatically detect COVID-19 for limiting the spread of the virus. Researchers have found that this virus has a major impact on voice production due to the respiratory system's dysfunction. In this paper, we investigate and analyze the effectiveness of cough analysis to accurately detect COVID-19. To do so, we performed binary classification, distinguishing positive COVID patients from healthy controls. The records are collected from the Coswara Dataset, a crowdsourcing project from the Indian Institute of Science (IIS). After data collection, we extracted the MFCC from the cough records. These acoustic features are mapped directly to the Decision Tree (DT), k-nearest neighbor (kNN) for k equals to 3, support vector machine (SVM), and deep neural network (DNN), or after a dimensionality reduction using principal component analysis (PCA), with 95 percent variance or 6 principal components. The 3NN classifier with all features has produced the best classification results. It detects COVID-19 patients with an accuracy of 97.48 percent, 96.96 percent f1-score, and 0.95 MCC. Suggesting that this method can accurately distinguish healthy controls and COVID-19 patients.


Keywords:

COVID-19, cough recordings, machine learning, PCA, classification

Adhatrao, K., Gaykar, A., Dhawan, A., Jha, R., & Honrao, V. (2013). Predicting students' performance using ID3 and C4. 5 classification algorithms. arXiv preprint arXiv:1310.2071.
DOI: https://doi.org/10.5121/ijdkp.2013.3504   Google Scholar

Ai, T., Yang, Z., Hou, H., Zhan, C., Chen, C., Lv, W., Tao, Q., Sun, Z., & Xia, L. (2020). Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology, 296(2), E32-E40. https://doi.org/10.1148/radiol.2020200642
DOI: https://doi.org/10.1148/radiol.2020200642   Google Scholar

Aly, M., Rahouma, K. H., & Ramzy, S. M. (2022). Pay attention to the speech: COVID-19 diagnosis using machine learning and crowdsourced respiratory and speech recordings. Alexandria Engineering Journal, 61(5), 3487–3500. https://doi.org/10.1016/j.aej.2021.08.070
DOI: https://doi.org/10.1016/j.aej.2021.08.070   Google Scholar

Anuradha, C., & Velmurugan, T. (2014). A data mining based survey on student performance evaluation system. In 2014 IEEE International Conference on Computational Intelligence and Computing Research (pp. 1–4). IEEE. https://doi.org/10.1109/ICCIC.2014.7238389
DOI: https://doi.org/10.1109/ICCIC.2014.7238389   Google Scholar

Anusuya, M. A., & Katti, S. K. (2010). Speech recognition by machine, a review. arXiv preprint arXiv:1001.2267.
  Google Scholar

Bengio, Y. (2009). Learning deep architectures for AI. Foundations and trends® in Machine Learning, 2(1), 1–127.
DOI: https://doi.org/10.1561/2200000006   Google Scholar

Benmalek, E., Elmhamdi, J., & Jilbab, A. (2021). Comparing CT scan and chest X-ray imaging for COVID-19 diagnosis. Biomedical Engineering Advances, 1, 100003. https://doi.org/10.1016/j.bea.2021.100003
DOI: https://doi.org/10.1016/j.bea.2021.100003   Google Scholar

Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. In Proceedings of the fifth annual workshop on Computational learning theory (pp. 144–152). The ACM Digital Library.
DOI: https://doi.org/10.1145/130385.130401   Google Scholar

Brown, C., Chauhan, J., Grammenos, A., Han, J., Hasthanasombat, A., Spathis, D., Xia, T., Cicuta, P., & Mascolo, C. (2020). Exploring automatic diagnosis of COVID-19 from crowdsourced respiratory sound data. arXiv preprint arXiv:2006.05919.
DOI: https://doi.org/10.1145/3394486.3412865   Google Scholar

Chaudhari, G., Jiang, X., Fakhry, A., Han, A., Xiao, J., Shen, S., & Khanzada, A. (2020). Virufy: Global applicability of crowdsourced and clinical datasets for AI detection of COVID-19 from cough. arXiv preprint arXiv:2011.13320.
  Google Scholar

Coppock, H., Gaskell, A., Tzirakis, P., Baird, A., Jones, L., & Schuller, B. (2021). End-to-end convolutional neural network enables COVID-19 detection from breath and cough audio: a pilot study. BMJ innovations, 7(2), 356–362. https://doi.org/10.1136/bmjinnov-2021-000668
DOI: https://doi.org/10.1136/bmjinnov-2021-000668   Google Scholar

Fakhry, A., Jiang, X., Xiao, J., Chaudhari, G., Han, A., & Khanzada, A. (2021). Virufy: A multi-branch deep learning network for automated detection of COVID-19. arXiv preprint arXiv:2103.01806.
DOI: https://doi.org/10.21437/Interspeech.2021-378   Google Scholar

Han, J., Brown, C., Chauhan, J., Grammenos, A., Hasthanasombat, A., Spathis, D., Xia, T., Cicuta, P., & Mascolo, C. (2021). Exploring Automatic COVID-19 Diagnosis via voice and symptoms from Crowdsourced Data. In ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 8328–8332). IEEE.
DOI: https://doi.org/10.1109/ICASSP39728.2021.9414576   Google Scholar

Han, W., Chan, C. F., Choy, C. S., & Pun, K. P. (2006). An efficient MFCC extraction method in speech recognition. In 2006 IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 4). IEEE.
DOI: https://doi.org/10.1109/ISCAS.2006.1692543   Google Scholar

Indyk, P., & Motwani, R. (1998). Approximate nearest neighbors: towards removing the curse of dimensionality. In Proceedings of the thirtieth annual ACM symposium on Theory of computing (pp. 604–613). The ACM Digital Library.
DOI: https://doi.org/10.1145/276698.276876   Google Scholar

Ismail, M. A., Deshmukh, S., & Singh, R. (2021). Detection of COVID-19 through the analysis of vocal fold oscillations. In ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 1035–1039). IEEE.
DOI: https://doi.org/10.1109/ICASSP39728.2021.9414201   Google Scholar

Laguarta, J., Hueto, F., & Subirana, B. (2020). COVID-19 Artificial Intelligence Diagnosis using only Cough Recordings. In IEEE Open Journal of Engineering in Medicine and Biology (vol. 1, 275–281). IEEE. https://doi.org/10.1109/OJEMB.2020.3026928
DOI: https://doi.org/10.1109/OJEMB.2020.3026928   Google Scholar

Li, L., Qin, L., Xu, Z., Yin, Y., Wang, X., Kong, B., Bai, J., Lu, Y., Fang, Z., Song, Q., Cao, K., Liu, D., Wang, G., Xu, Q., Fang, X., Zhang, S., Xia, J., & Xia, J. (2020). Using Artificial Intelligence to Detect COVID19 and Community-acquired Pneumonia Based on Pulmonary CT: Evaluation of the Diagnostic Accuracy. Radiology, 296(2), E65–E71. https://doi.org/10.1148/radiol.2020200905
DOI: https://doi.org/10.1148/radiol.2020200905   Google Scholar

Muda, L., Begam, M., & Elamvazuthi, I. (2010). Voice recognition algorithms using mel frequency cepstral coefficient (MFCC) and dynamic time warping (DTW) techniques. arXiv preprint arXiv:1003.4083.
  Google Scholar

Nassif, A. B., Shahin, I., Attili, I., Azzeh, M., & Shaalan, K. (2019). Speech recognition using deep neural networks: A systematic review. IEEE access, 7, 19143–19165. https://doi.org/10.1109/ACCESS.2019.2896880
DOI: https://doi.org/10.1109/ACCESS.2019.2896880   Google Scholar

Pahar, M., Klopper, M., Warren, R., & Niesler, T. (2021). COVID-19 cough classification using machine learning and global smartphone recordings. Computers in Biology and Medicine, 135, 104572. https://doi.org/10.1016/j.compbiomed.2021.104572
DOI: https://doi.org/10.1016/j.compbiomed.2021.104572   Google Scholar

Pal, A., & Sankarasubbu, M. (2021). Pay attention to the cough: Early diagnosis of COVID-19 using interpretable symptoms embeddings with cough sound signal processing. In Proceedings of the 36th Annual ACM Symposium on Applied Computing (pp. 620–628). The ACM Digital Library. https://doi.org/10.1145/3412841.3441943
DOI: https://doi.org/10.1145/3412841.3441943   Google Scholar

Pisner, D. A., & Schnyer, D. M. (2020). Support vector machine.In Machine learning (pp. 101–121). Academic Press.
DOI: https://doi.org/10.1016/B978-0-12-815739-8.00006-7   Google Scholar

Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1), 81–106.
DOI: https://doi.org/10.1007/BF00116251   Google Scholar

Sharma, N., Krishnan, P., Kumar, R., Ramoji, S., Chetupalli, S. R., Ghosh, P. K., & Ganapathy, S. (2020).
  Google Scholar

Coswara--a database of breathing, cough, and voice sounds for COVID-19 diagnosis. arXiv preprintarXiv:2005.10548.
  Google Scholar

Singh, H., & Bathla, A. K. (2013). A survey on speech recognition. International Journal of Advanced Research in Computer Engineering & Technology, 2(6), 2186–2189.
  Google Scholar

Weng, L. M., Su, X., & Wang, X. Q. (2021). Pain symptoms in patients with coronavirus disease (COVID-19): a literature review. Journal of Pain Research, 14, 147. https://doi.org/10.2147/JPR.S269206
DOI: https://doi.org/10.2147/JPR.S269206   Google Scholar

Wu, X., Hui, H., Niu, M., Li, L., Wang, L., He, B., Yang, X., Li, L. Li, H., Tian, J., & Zha, Y. (2020). Deep learning-based multi-view fusion model for screening 2019 novel coronavirus pneumonia: a multicentre study. European Journal of Radiology, 128, 109041. https://doi.org/10.1016/j.ejrad.2020.109041
DOI: https://doi.org/10.1016/j.ejrad.2020.109041   Google Scholar

Yang, Y., Yang, M., Shen, C., Wang, F., Yuan, J., Li, J., Zhang, M., Wang, Z., Xing, L. Wei, J., Peng, L., Wong, G., Zheng, H., Wu, W., Liao, M., Feng, K., Li, J., Yang, Q., Zhao, J., Zhang, Z., Liu, L., & Liu, Y. (2020). Evaluating the accuracy of different respiratory specimens in the laboratory diagnosis and monitoring the viral shedding of 2019-nCoV infections. MedRxiv. https://doi.org/10.1101/2020.02.11.20021493
DOI: https://doi.org/10.1101/2020.02.11.20021493   Google Scholar

Zheng, F., Zhang, G., & Song, Z. (2001). Comparison of different implementations of MFCC. Journal of Computer science and Technology, 16(6), 582–589. https://doi.org/10.1007/BF02943243
DOI: https://doi.org/10.1007/BF02943243   Google Scholar

Download


Published
2022-12-19

Cited by

BENMALEK, E. ., EL MHAMDI, J., JILBAB, A. ., & JBARI, A. . (2022). A COUGH-BASED COVID-19 DETECTION SYSTEM USING PCA AND MACHINE LEARNING CLASSIFIERS. Applied Computer Science, 18(4), 96–115. https://doi.org/10.35784/acs-2022-31

Authors

Elmehdi BENMALEK 
elmehdi.benmalek@um5s.net.ma
E2SN, ENSAM de Rabat, Mohammed V University in Rabat Morocco

Authors

Jamal EL MHAMDI 

E2SN, ENSAM de Rabat, Mohammed V University in Rabat Morocco

Authors

Abdelilah JILBAB 

E2SN, ENSAM de Rabat, Mohammed V University in Rabat, Morocco

Authors

Atman JBARI 

E2SN, ENSAM de Rabat, Mohammed V University in Rabat Morocco

Statistics

Abstract views: 215
PDF downloads: 130


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Similar Articles

1 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.