INFORMATION TECHNOLOGY OF STOCK INDEXES FORECASTING ON THE BASE OF FUZZY NEURAL NETWORKS
Yuriy TRYUS
tryusyv@gmail.comComputer Science and Information Technology Department, Cherkasy State Technological University,460 Shevchenko Blvd, 18006, Cherkasy (Ukraine)
Nataliya ANTIPOVA
Computer Science and Information Technology Department, Cherkasy State Technological University,460 Shevchenko Blvd, 18006, Cherkasy, (Ukraine)
Kateryna ZHURAVEL
Computer Science and Information Technology Department, Cherkasy State Technological University,460 Shevchenko Blvd, 18006, Cherkasy, (Ukraine)
Grygoriy ZASPA
Software Department, Cherkasy State Technological University, 460 Shevchenko Blvd, 18006, Cherkasy (Ukraine)
Abstract
In this research the information technology for stock indexes forecast on the base of fuzzy neural networks was created. Thepossibility of its use for multi-parameter short-time stock indexes forecasts, in particular S&P500, DJ, NASDAC was checked. Thecreated information technology is used making several consequential steps. The stock indexes forecast numeral experiment based on real data for period of several years with use of the technology offered was made.
Keywords:
neural networks, fuzzy neural networks, forecasting, stock indexesReferences
Adaptive Neuro-Fuzzy Modeling. (n.d.). Retrieved September 26, 2016, from MathWorks website, https://www.mathworks.com/help/fuzzy/adaptive-neuro-fuzzy-inference-systems.html
Google Scholar
Adaptive neuro-fuzzy inference system. (n.d.). Retrieved September 26, 2016, from MathWorks website, https://www.mathworks.com/help/fuzzy/neuro-adaptive-learning-and-anfis.html
Google Scholar
Jang, J.-S. R., (1993). ANFIS: Adaptive-Network-based Fuzzy Inference Systems. IEEE Transactions on Systems, Man, and Cybernetics, 23(3), 665–685.
DOI: https://doi.org/10.1109/21.256541
Google Scholar
Jang, J.-S. R., & Sun, C.-T. (1995). Neuro-fuzzy modeling and control. Proceedings of the IEEE, 83(3), 378–406.
DOI: https://doi.org/10.1109/5.364486
Google Scholar
Jang, J.-S. R., & Sun, C.-T. (1997). Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. Upper Saddle River, NJ: Prentice Hall.
DOI: https://doi.org/10.1109/TAC.1997.633847
Google Scholar
Mohaddes, S. A., & Fahimifard, S. M. (2015). Application of Adaptive Neuro-Fuzzy Inference System (ANFIS) in Forecasting Agricultural Products Export Revenues (Case of Iran’s Agriculture Sector). Journal of Agricultural Science and Technology, 17(1), 1–10.
Google Scholar
Svalina, I., Galzina, V., Lujić, R., & Šimunović, G. (2013). An adaptive network-based fuzzy inference system (ANFIS) for the forecasting: The case of close price indices. Expert Systems with Applications, 40(15), 6055-6063. https://doi.org/10.1016/j.eswa.2013.05.029
DOI: https://doi.org/10.1016/j.eswa.2013.05.029
Google Scholar
Toolbox fuzzy-logic Matlab. (n.d.). Retrieved September 28, 2016, from MathWorks website, http://www.mathworks.com/products/fuzzy-logic/
Google Scholar
Wang, L.-X. (1994). Adaptive fuzzy systems and control: design and stability analysis. Upper Saddle River, NJ: Prentice Hall.
Google Scholar
Wang, Y. M., & Elhag, T. (2008). An Adaptive Neuro-fuzzy Inference System for Bridge Risk Assessment. Expert Systems with Applications, 34(4), 3099–3106. https://doi.org/10.1016/j.eswa.2007.06.026
DOI: https://doi.org/10.1016/j.eswa.2007.06.026
Google Scholar
YahooFinance – BusinessFinance, StockMarket, Quotes, News. (n.d.). Retrieved September 21, 2016, from YahooFinance website, http://finance.yahoo.com
Google Scholar
Zhang, G., & Hu, M. Y. (1998). Neural Network Forecasting of the British Pound/US Dollar Exchange Rate. Omega The International Journal of Management Science, 26(4), 495–506. https://doi.org/10.1016/S0305-0483(98)00003-6
DOI: https://doi.org/10.1016/S0305-0483(98)00003-6
Google Scholar
Authors
Yuriy TRYUStryusyv@gmail.com
Computer Science and Information Technology Department, Cherkasy State Technological University,460 Shevchenko Blvd, 18006, Cherkasy Ukraine
Authors
Nataliya ANTIPOVAComputer Science and Information Technology Department, Cherkasy State Technological University,460 Shevchenko Blvd, 18006, Cherkasy, Ukraine
Authors
Kateryna ZHURAVELComputer Science and Information Technology Department, Cherkasy State Technological University,460 Shevchenko Blvd, 18006, Cherkasy, Ukraine
Authors
Grygoriy ZASPASoftware Department, Cherkasy State Technological University, 460 Shevchenko Blvd, 18006, Cherkasy Ukraine
Statistics
Abstract views: 111PDF downloads: 14
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Similar Articles
- Rowell HERNANDEZ, Robert ATIENZA, CAREER TRACK PREDICTION USING DEEP LEARNING MODEL BASED ON DISCRETE SERIES OF QUANTITATIVE CLASSIFICATION , Applied Computer Science: Vol. 17 No. 4 (2021)
- Bilal OWAIDAT, EXPLORING THE ACCURACY AND RELIABILITY OF MACHINE LEARNING APPROACHES FOR STUDENT PERFORMANCE , Applied Computer Science: Vol. 20 No. 3 (2024)
- Amina KINANE DAOUADJI, Fatima BENDELLA, IMPROVING E-LEARNING BY FACIAL EXPRESSION ANALYSIS , Applied Computer Science: Vol. 20 No. 2 (2024)
- Elmehdi BENMALEK, Jamal EL MHAMDI, Abdelilah JILBAB, Atman JBARI, A COUGH-BASED COVID-19 DETECTION SYSTEM USING PCA AND MACHINE LEARNING CLASSIFIERS , Applied Computer Science: Vol. 18 No. 4 (2022)
- Sylwester KORGA, Kamil ŻYŁA, Jerzy JÓZWIK, Jarosław PYTKA, Kamil CYBUL, PREDICTIVE TOOLS AS PART OF DECISSION AIDING PROCESSES AT THE AIRPORT – THE CASE OF FACEBOOK PROPHET LIBRARY , Applied Computer Science: Vol. 19 No. 4 (2023)
- Wieslaw FRĄCZ, Grzegorz JANOWSKI, INFLUENCE OF HOMOGENIZATION METHODS IN PREDICTION OF STRENGTH PROPERTIES FOR WPC COMPOSITES , Applied Computer Science: Vol. 13 No. 3 (2017)
- Muayed S AL-HUSEINY, Ahmed S SAJIT, BREAST CANCER CAD SYSTEM BY USING TRANSFER LEARNING AND ENHANCED ROI , Applied Computer Science: Vol. 18 No. 1 (2022)
- Mahmoud BAKR, Sayed ABDEL-GABER, Mona NASR, Maryam HAZMAN, TOMATO DISEASE DETECTION MODEL BASED ON DENSENET AND TRANSFER LEARNING , Applied Computer Science: Vol. 18 No. 2 (2022)
- Benjamin KOMMEY, Ernest Ofosu ADDO, Elvis TAMAKLOE, Eric Tutu TCHAO, Henry NUNOO-MENSAH, A SIX-PORT MEASUREMENT DEVICE FOR HIGH POWER MICROWAVE VECTOR NETWORK ANALYSIS , Applied Computer Science: Vol. 18 No. 3 (2022)
- Sheikh Amir FAYAZ, Majid ZAMAN, Muheet Ahmed BUTT, Sameer KAUL, HOW MACHINE LEARNING ALGORITHMS ARE USED IN METEOROLOGICAL DATA CLASSIFICATION: A COMPARATIVE APPROACH BETWEEN DT, LMT, M5-MT, GRADIENT BOOSTING AND GWLM-NARX MODELS , Applied Computer Science: Vol. 18 No. 4 (2022)
You may also start an advanced similarity search for this article.