INFLUENCE OF HOMOGENIZATION METHODS IN PREDICTION OF STRENGTH PROPERTIES FOR WPC COMPOSITES

Wieslaw FRĄCZ

wf@prz.edu.pl
Rzeszow University of Technology, Department of Materials Forming and Processing, al. Powstańców Warszawy 8, 35-959 Rzeszów, (Poland)

Grzegorz JANOWSKI


Rzeszow University of Technology, Department of Materials Forming and Processing, al. Powstańców Warszawy 8, 35-959 Rzeszów (Poland)

Abstract

In order to reduce costs of experimental research, new methods of forecasting material properties are being developed. The current intensive increase in computing power motivates to develop the computer simulations for material properties prediction. This is due to the possibility of using analytical and numerical methods of homogenization. In this work calculations for predicting the properties of WPC composites using analytical homogenization methods, i.e. Mori-Tanaka (first and second order) models, Nemat-Nasser and Hori models and numerical homogenization methods were performed.


Keywords:

WPC composites, homogenization methods, Digimat software

Abdulle, A. (2013). Numerical homogenization methods (No. EPFL-ARTICLE-184958).
  Google Scholar

Amirmaleki, M., Samei, J., Green, D. E., van Riemsdijk, I., & Stewart, L. (2016). 3D micromechanical modeling of dual phase steels using the representative volume element method. Mechanics of Materials, 101, 27–39. https://doi.org/10.1016/j.mechmat.2016.07.011
DOI: https://doi.org/10.1016/j.mechmat.2016.07.011   Google Scholar

Bendsøe, M. P., & Kikuchi, N. (1988). Generating optimal topologies in structural design using a homogenization method. Computer methods in applied mechanics and engineering, 71(2), 197–224. https://doi.org/10.1016/0045-7825(88)90086-2
DOI: https://doi.org/10.1016/0045-7825(88)90086-2   Google Scholar

Benveniste, Y. (1987). A new approach to the application of Mori-Tanaka's theory in composite materials. Mechanics of materials, 6(2), 147–157. https://doi.org/10.1016/0167-6636(87)90005-6
DOI: https://doi.org/10.1016/0167-6636(87)90005-6   Google Scholar

Bouchart, V., Brieu, M., Kondo, D., & Abdelaziz, M. N. (2007). Macroscopic behavior of a reinforced elastomer: micromechanical modelling and validation. Mechanics & Industry, 8(3), 199–205. https://doi.org/10.1051/meca:2007039
DOI: https://doi.org/10.1051/meca:2007039   Google Scholar

Doghri, I., & Tinel, L. (2006). Micromechanics of inelastic composites with misaligned inclusions: numerical treatment of orientation. Computer methods in applied mechanics and engineering, 195(13), 1387–1406. https://doi.org/10.1016/j.cma.2005.05.041
DOI: https://doi.org/10.1016/j.cma.2005.05.041   Google Scholar

Eshelby, J. D. (1957). The determination of the elastic field of an ellipsoidal inclusion, and related problems. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (241(1226), pp. 376–396). The Royal Society. https://doi.org/10.1098/rspa.1957.0133
DOI: https://doi.org/10.1098/rspa.1957.0133   Google Scholar

e-Xstream engineering (2016). DIGIMAT – User’s manual. MSC Software Belgium SA, MontSaint-Guibert.
  Google Scholar

Frącz, W., & Janowski, G. (2016). Strength analysis of molded pieces produced from woodpolymer composites (WPC) including their complex structures. Composites Theory and Practice, 16(4), 260–265.
  Google Scholar

Lagoudas, D. C., Gavazzi, A. C., & Nigam, H. (1991). Elastoplastic behavior of metal matrix composites based on incremental plasticity and the Mori-Tanaka averaging scheme. Computational Mechanics, 8(3), 193–203. https://doi.org/10.1007/BF00372689
DOI: https://doi.org/10.1007/BF00372689   Google Scholar

Lielens, G. (1999). Micro-macro modeling of structured materials (PhD thesis). Universite Catholique de Louvain, Louvain-la-Neuve, Belgium.
  Google Scholar

Maxwell, J. C. (1867). On the dynamical theory of gases. Philosophical transactions of the Royal Society of London, 157, 49–88. https://doi.org/10.1098/rstl.1867.0004
DOI: https://doi.org/10.1098/rstl.1867.0004   Google Scholar

Maxwell, J. C. (1873), A treatise on electricity and magnetism. 3rd Ed. Oxford: Clarendon Press.
  Google Scholar

Mercier, S., & Molinari, A. (2009). Homogenization of elastic–viscoplastic heterogeneous materials: Self-consistent and Mori-Tanaka schemes. International Journal of Plasticity, 25(6), 1024–1048. https://doi.org/10.1016/j.ijplas.2008.08.006
DOI: https://doi.org/10.1016/j.ijplas.2008.08.006   Google Scholar

Mori, T., & Tanaka, K. (1973). Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta metallurgica, 21(5), 571–574. https://doi.org/10.1016/0001-6160(73)90064-3
DOI: https://doi.org/10.1016/0001-6160(73)90064-3   Google Scholar

Nemat-Nasser, S., & Hori, M. (1993). Micromechanics: overall properties of heterogeneous solids, Amsterdam: Elsevier Science.
  Google Scholar

Pierard, O., LLorca, J., Segurado, J., & Doghri, I. (2007). Micromechanics of particle-reinforced elasto-viscoplastic composites: finite element simulations versus affine homogenization. International Journal of Plasticity, 23(6), 1041–1060. https://doi.org/10.1016/j.ijplas.2006.09.003
DOI: https://doi.org/10.1016/j.ijplas.2006.09.003   Google Scholar

Rayleigh, L. (1892). LVI. On the influence of obstacles arranged in rectangular order upon the properties of a medium. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 34(211), 481–502. https://doi.org/10.1080/14786449208620364
DOI: https://doi.org/10.1080/14786449208620364   Google Scholar

Soni, G., Singh, R., Mitra, M., & Falzon, B. G. (2014). Modelling matrix damage and fibre-matrix interfacial decohesion in composite laminates via a multi-fibre multi-layer representative volume element (M 2 RVE). International Journal of Solids and Structures, 51(2), 449–461. https://doi.org/10.1016/j.ijsolstr.2013.10.018
DOI: https://doi.org/10.1016/j.ijsolstr.2013.10.018   Google Scholar

Trzepieciński, T., Ryzińska, G., Biglar, M., & Gromada, M. (2017). Modelling of multilayer actuator layers by homogenisation technique using Digimat software. Ceramics International, 43(3), 3259-3266. https://doi.org/10.1016/j.ceramint.2016.11.157
DOI: https://doi.org/10.1016/j.ceramint.2016.11.157   Google Scholar

Voigt, W. (1889). Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper. Annalen der physik, 274(12), 573–587. https://doi.org/10.1002/andp.18892741206
DOI: https://doi.org/10.1002/andp.18892741206   Google Scholar

Download


Published
2017-09-30

Cited by

FRĄCZ, W. ., & JANOWSKI, G. (2017). INFLUENCE OF HOMOGENIZATION METHODS IN PREDICTION OF STRENGTH PROPERTIES FOR WPC COMPOSITES. Applied Computer Science, 13(3), 77–89. https://doi.org/10.23743/acs-2017-23

Authors

Wieslaw FRĄCZ 
wf@prz.edu.pl
Rzeszow University of Technology, Department of Materials Forming and Processing, al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland

Authors

Grzegorz JANOWSKI 

Rzeszow University of Technology, Department of Materials Forming and Processing, al. Powstańców Warszawy 8, 35-959 Rzeszów Poland

Statistics

Abstract views: 237
PDF downloads: 19


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.