INFLUENCE OF HOMOGENIZATION METHODS IN PREDICTION OF STRENGTH PROPERTIES FOR WPC COMPOSITES
Article Sidebar
Open full text
Issue Vol. 13 No. 3 (2017)
-
UTILISATION OF EVOLUTION ALGORITHM IN PRODUCTION LAYOUT DESIGN
Martin KRAJČOVIČ, Patrik GRZNÁR5-18
-
DESIGN AND DYNAMICS MODELING FOR ELECTRIC VEHICLE
Maria TOMASIKOVA, Frantisek BRUMERČÍK, Aleksander NIEOCZYM19-31
-
SIMPLIFIED GRAPHICAL DOMAIN-SPECIFIC LANGUAGES FOR THE MOBILE DOMAIN – PERSPECTIVES OF LEARNABILITY BY NONTECHNICAL USERS
Kamil ŻYŁA32-40
-
A MODEL OF KNOWLEDGE ACQUISITION IN THE MAINTENANCE DEPARTMENT OF A PRODUCTION COMPANY
Małgorzata ŚLIWA, Ewelina KOSICKA41-54
-
NEW EXTRUSION PROCESS FOR PRODUCING TWIST DRILLS USING SPLIT DIES
Tomasz BULZAK, Zbigniew PATER, Janusz TOMCZAK55-63
-
NUMERICAL ANALYSIS OF SPINAL LOADS IN SPONDYLOLISTHESIS TREATMENT USING PEDICLE SCREWS – PRELIMINARY RESEARCH
Jarosław ZUBRZYCKI, Natalia SMIDOVA, Jakub LITAK, Andrei AUSIYEVICH64-76
-
INFLUENCE OF HOMOGENIZATION METHODS IN PREDICTION OF STRENGTH PROPERTIES FOR WPC COMPOSITES
Wieslaw FRĄCZ, Grzegorz JANOWSKI77-89
-
CREATING MARKETING KNOWLEDGE ABOUT THE CONSUMER IN THE CONTEXT OF THE DEVELOPMENT OF INTERNET TOOLS
Krystyna MAZUREK-ŁOPACIŃSKA, Magdalena SOBOCIŃSKA90-101
Archives
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
-
Vol. 15 No. 4
2019-12-30 8
-
Vol. 15 No. 3
2019-09-30 8
-
Vol. 15 No. 2
2019-06-30 8
-
Vol. 15 No. 1
2019-03-30 8
-
Vol. 14 No. 4
2018-12-30 8
-
Vol. 14 No. 3
2018-09-30 8
-
Vol. 14 No. 2
2018-06-30 8
-
Vol. 14 No. 1
2018-03-30 7
-
Vol. 13 No. 4
2017-12-30 8
-
Vol. 13 No. 3
2017-09-30 8
-
Vol. 13 No. 2
2017-06-30 8
-
Vol. 13 No. 1
2017-03-30 8
Main Article Content
DOI
Authors
Abstract
In order to reduce costs of experimental research, new methods of forecasting material properties are being developed. The current intensive increase in computing power motivates to develop the computer simulations for material properties prediction. This is due to the possibility of using analytical and numerical methods of homogenization. In this work calculations for predicting the properties of WPC composites using analytical homogenization methods, i.e. Mori-Tanaka (first and second order) models, Nemat-Nasser and Hori models and numerical homogenization methods were performed.
Keywords:
References
Abdulle, A. (2013). Numerical homogenization methods (No. EPFL-ARTICLE-184958).
Amirmaleki, M., Samei, J., Green, D. E., van Riemsdijk, I., & Stewart, L. (2016). 3D micromechanical modeling of dual phase steels using the representative volume element method. Mechanics of Materials, 101, 27–39. https://doi.org/10.1016/j.mechmat.2016.07.011 DOI: https://doi.org/10.1016/j.mechmat.2016.07.011
Bendsøe, M. P., & Kikuchi, N. (1988). Generating optimal topologies in structural design using a homogenization method. Computer methods in applied mechanics and engineering, 71(2), 197–224. https://doi.org/10.1016/0045-7825(88)90086-2 DOI: https://doi.org/10.1016/0045-7825(88)90086-2
Benveniste, Y. (1987). A new approach to the application of Mori-Tanaka's theory in composite materials. Mechanics of materials, 6(2), 147–157. https://doi.org/10.1016/0167-6636(87)90005-6 DOI: https://doi.org/10.1016/0167-6636(87)90005-6
Bouchart, V., Brieu, M., Kondo, D., & Abdelaziz, M. N. (2007). Macroscopic behavior of a reinforced elastomer: micromechanical modelling and validation. Mechanics & Industry, 8(3), 199–205. https://doi.org/10.1051/meca:2007039 DOI: https://doi.org/10.1051/meca:2007039
Doghri, I., & Tinel, L. (2006). Micromechanics of inelastic composites with misaligned inclusions: numerical treatment of orientation. Computer methods in applied mechanics and engineering, 195(13), 1387–1406. https://doi.org/10.1016/j.cma.2005.05.041 DOI: https://doi.org/10.1016/j.cma.2005.05.041
Eshelby, J. D. (1957). The determination of the elastic field of an ellipsoidal inclusion, and related problems. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (241(1226), pp. 376–396). The Royal Society. https://doi.org/10.1098/rspa.1957.0133 DOI: https://doi.org/10.1098/rspa.1957.0133
e-Xstream engineering (2016). DIGIMAT – User’s manual. MSC Software Belgium SA, MontSaint-Guibert.
Frącz, W., & Janowski, G. (2016). Strength analysis of molded pieces produced from woodpolymer composites (WPC) including their complex structures. Composites Theory and Practice, 16(4), 260–265.
Lagoudas, D. C., Gavazzi, A. C., & Nigam, H. (1991). Elastoplastic behavior of metal matrix composites based on incremental plasticity and the Mori-Tanaka averaging scheme. Computational Mechanics, 8(3), 193–203. https://doi.org/10.1007/BF00372689 DOI: https://doi.org/10.1007/BF00372689
Lielens, G. (1999). Micro-macro modeling of structured materials (PhD thesis). Universite Catholique de Louvain, Louvain-la-Neuve, Belgium.
Maxwell, J. C. (1867). On the dynamical theory of gases. Philosophical transactions of the Royal Society of London, 157, 49–88. https://doi.org/10.1098/rstl.1867.0004 DOI: https://doi.org/10.1098/rstl.1867.0004
Maxwell, J. C. (1873), A treatise on electricity and magnetism. 3rd Ed. Oxford: Clarendon Press.
Mercier, S., & Molinari, A. (2009). Homogenization of elastic–viscoplastic heterogeneous materials: Self-consistent and Mori-Tanaka schemes. International Journal of Plasticity, 25(6), 1024–1048. https://doi.org/10.1016/j.ijplas.2008.08.006 DOI: https://doi.org/10.1016/j.ijplas.2008.08.006
Mori, T., & Tanaka, K. (1973). Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta metallurgica, 21(5), 571–574. https://doi.org/10.1016/0001-6160(73)90064-3 DOI: https://doi.org/10.1016/0001-6160(73)90064-3
Nemat-Nasser, S., & Hori, M. (1993). Micromechanics: overall properties of heterogeneous solids, Amsterdam: Elsevier Science.
Pierard, O., LLorca, J., Segurado, J., & Doghri, I. (2007). Micromechanics of particle-reinforced elasto-viscoplastic composites: finite element simulations versus affine homogenization. International Journal of Plasticity, 23(6), 1041–1060. https://doi.org/10.1016/j.ijplas.2006.09.003 DOI: https://doi.org/10.1016/j.ijplas.2006.09.003
Rayleigh, L. (1892). LVI. On the influence of obstacles arranged in rectangular order upon the properties of a medium. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 34(211), 481–502. https://doi.org/10.1080/14786449208620364 DOI: https://doi.org/10.1080/14786449208620364
Soni, G., Singh, R., Mitra, M., & Falzon, B. G. (2014). Modelling matrix damage and fibre-matrix interfacial decohesion in composite laminates via a multi-fibre multi-layer representative volume element (M 2 RVE). International Journal of Solids and Structures, 51(2), 449–461. https://doi.org/10.1016/j.ijsolstr.2013.10.018 DOI: https://doi.org/10.1016/j.ijsolstr.2013.10.018
Trzepieciński, T., Ryzińska, G., Biglar, M., & Gromada, M. (2017). Modelling of multilayer actuator layers by homogenisation technique using Digimat software. Ceramics International, 43(3), 3259-3266. https://doi.org/10.1016/j.ceramint.2016.11.157 DOI: https://doi.org/10.1016/j.ceramint.2016.11.157
Voigt, W. (1889). Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper. Annalen der physik, 274(12), 573–587. https://doi.org/10.1002/andp.18892741206 DOI: https://doi.org/10.1002/andp.18892741206
Article Details
Abstract views: 479
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
