COMPUTER AIDED THERMAL PROCESSES IN TECHNICAL SPACES

Marian JANCZAREK

m.janczarek@pollub.pl
Institute of Technological Systems of Information, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka St. 36, 20-618 Lublin (Poland)

Oleksij BULYANDRA


National University of Food Technologies, Volodymyrska St, 68, Kiev, (Ukraine)

Abstract

This paper describes research work on methods concerning heat transfers through walls of thermal technical chambers. The paper presents the mathematical and physical analysis of problems in the field of energy savings and material selection in thermal chambers in controlled gaseous environment. The purpose for the research is to point out areas subjected to the highest energy losses  caused by building’s construction and geographical orientation of walls in the aspect of daily atmospheric temperature changes  emerging on chamber exterior. Thermal problems were solved using computer aided support. The paper presents exemplary measurement results taken in Lublin region during various periods throughout a year.


Keywords:

heat transfer, thermal technical chambers, physical modeling, control process

Bzowska, D. (2000). Heating load demand for a room under weather conditions.Archives of Thermodynamics, 21(1–2), 43–52.
  Google Scholar

Bzowska, D. (2002). Prediction of natural ventilation rates induced by weather parameters. Archives of Civil Engineering, 48(4), 473–492.
  Google Scholar

Bzowska, D. (2005). Natural ventilation induced by weather parameters in two-zone building.Archives of Civil Engineering, 51(1), 135–151.
  Google Scholar

Calderaro, V., & Agnoli, S. (2007). Passive heating and cooling strategies in an approaches of retrofit in Rome. Energy and Buildings, 39(8), 875–885. https://doi.org/10.1016/j.enbuild.2006.10.008
DOI: https://doi.org/10.1016/j.enbuild.2006.10.008   Google Scholar

Chwieduk, D. (2006). Modelowanie i analiza pozyskiwania oraz konwersji termicznej energii promieniowania słonecznego w budynku. Prace Instytutu Podstawowych Problemów Techniki PAN, 11, 5–262.
  Google Scholar

Dzieniszewski, W. (2005). Procesy cieplno-przepływowe w budynkach: podstawy modelowania matematycznego. Łódź: Komitet Inżynierii Lądoweji Wodnej PAN.
  Google Scholar

Etheridge, D. (2002). Nondimensional methods for natural ventilation design. Building and Environment, 37(11), 1057–1072. https://doi.org/10.1016/S0360-1323(01)00091-9
DOI: https://doi.org/10.1016/S0360-1323(01)00091-9   Google Scholar

Fracastaro, G., Mutani, G., & Perino, M. (2002). Experimental and theoretical analysis of natural ventilation by window openings. Energy and Buildings, 34(8), 817–827. https://doi.org/10.1016/S0378-7788(02)00099-3
DOI: https://doi.org/10.1016/S0378-7788(02)00099-3   Google Scholar

Hunt, G. R., & Linden. P. F. (2001). Steady-state flows in an enclosure ventilated by buoyancy forces assisted by winds. Journal of Fluid Mechanics, 426, 355–386.
DOI: https://doi.org/10.1017/S0022112000002470   Google Scholar

Janczarek, M. M. (2013). Analiza matematyczno-fizyczna cieplnych komór technicznych. In M. Janczarek & J. Lipski (Eds.), Technologie informacyjne w technice i kształceniu (pp. 127–137). Lublin: Politechnika Lubelska.
  Google Scholar

Janczarek, M. M., & Świć, A. (2012). Scientific and technological description of heat and mass transfer processes in chambers. Annals Of Faculty Of Engineering Hunedoara–International Journal Of Engineering, 10, 55–60.
  Google Scholar

Janczarek, M., & Bulyandra, O. (2016). Computer modeling of energy saving effects. Applied Computer Science, 12(3), 47–60.
  Google Scholar

Kisilewicz, T. (2003). Stateczność cieplna budynków pasywnych. Paper presentedat the IX Polska Konferencja Naukowo-Techniczna Fizyka Budowli w Teorii i Praktyce, Łódź, Poland.
  Google Scholar

Lomas, K., Cook, M., & Fiala, D. (2007). Low energy architecture for severe US climate: Design and evaluation on a hybrid ventilation strategy. Energy and Buildings, 39(1), 32–44. https://doi.org/10.1016/j.enbuild.2006.03.032
DOI: https://doi.org/10.1016/j.enbuild.2006.03.032   Google Scholar

Suchorab, Z., Sobczuk, H., & Lagod, G. (2016). Estimation of Building Material Moisture Using Non-invasive TDR Sensors. In L. Pawłowski (Ed.), Environmental Engineering IV (pp.433–439). London: Taylor & Francis Group. https://doi.org/10.1201/b14894-64
DOI: https://doi.org/10.1063/1.4955231   Google Scholar

Voeltzel, A., Carrie, F. R., & Guarracino, G. (2001). Thermal and ventilation modelling of large highly-glazed spaces.Building and Environment, 33(2), 121–132. https://doi.org/10.1016/S0378-7788(00)00074-8
DOI: https://doi.org/10.1016/S0378-7788(00)00074-8   Google Scholar

Download


Published
2017-06-30

Cited by

JANCZAREK, M., & BULYANDRA, O. (2017). COMPUTER AIDED THERMAL PROCESSES IN TECHNICAL SPACES. Applied Computer Science, 13(2), 82–93. https://doi.org/10.23743/acs-2017-16

Authors

Marian JANCZAREK 
m.janczarek@pollub.pl
Institute of Technological Systems of Information, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka St. 36, 20-618 Lublin Poland

Authors

Oleksij BULYANDRA 

National University of Food Technologies, Volodymyrska St, 68, Kiev, Ukraine

Statistics

Abstract views: 252
PDF downloads: 7


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Similar Articles

<< < 2 3 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.