IMPLICATIONS OF NEURAL NETWORK AS A DECISION-MAKING TOOL IN MANAGING KAZAKHSTAN’S AGRICULTURAL ECONOMY

Monika KULISZ

m.kulisz@kop.pollub.pl
Lublin University of Technology, Faculty of Management, Department of Organization of Enterprise (Poland)
https://orcid.org/0000-0002-8111-2316

Aigerim DUISENBEKOVA


L.N. Gumilyov Eurasian National University, Faculty of Economics, Department of Economics and Entrepreneurship, D.Serikbayev East Kazakhstan Technical University, School of Architecture, Civil Engineering and Energy, (Kazakhstan)
https://orcid.org/0000-0001-9167-8076

Justyna KUJAWSKA


Lublin University of Technology, Faculty of Environmental Engineering, Department of Biomass and Waste Conversion into Biofuels (Poland)
https://orcid.org/0000-0002-4809-2472

Danira KALDYBAYEVA


L.N. Gumilyov Eurasian National University, Faculty of Economics, Department of Economics and Entrepreneurship (Kazakhstan)
https://orcid.org/0000-0002-4370-4126

Bibigul ISSAYEVA


L.N. Gumilyov Eurasian National University, Faculty of Economics, Department of Economics and Entrepreneurship (Kazakhstan)
https://orcid.org/0000-0002-8109-2896

Piotr LICHOGRAJ


John Paul II University of Applied Sciences in Biala Podlaska, Department of Technical Sciences, (Poland)

Wojciech CEL


Lublin University of Technology, Faculty of Environmental Engineering, Department of Renewable Energy Engineering (Poland)

Abstract

This study investigates the application of Artificial Neural Networks (ANN) in forecasting agricultural yields in Kazakhstan, highlighting its implications for economic management and policy-making. Utilizing data from the Bureau of National Statistics of the Republic of Kazakhstan (2000-2023), the research develops two ANN models using the Neural Net Fitting library in MATLAB. The first model predicts the total gross yield of main agricultural crops, while the second forecasts the share of individual crops, including cereals, oilseeds, potatoes, vegetables, melons, and sugar beets. The models demonstrate high accuracy, with the total gross yield model achieving an R-squared value of 0.98 and the individual crop model showing an R value of 0.99375. These results indicate a strong predictive capability, essential for practical agricultural and economic planning. The study extends previous research by incorporating a comprehensive range of climatic and agrochemical data, enhancing the precision of yield predictions. The findings have significant implications for Kazakhstan's economy. Accurate yield predictions can optimize agricultural planning, contribute to food security, and inform policy decisions. The successful application of ANN models showcases the potential of AI and machine learning in agriculture, suggesting a pathway towards more efficient, sustainable farming practices and improved quality management systems.


Keywords:

artificial neural network, decision making, management, economy, agriculture

Annamalai, N., & Johnson, A. (2023). Analysis and forecasting of area under cultivation of rice in India: Univariate time series approach. SN Computer Science, 4, 193. https://doi.org/10.1007/s42979-022-01604-0
DOI: https://doi.org/10.1007/s42979-022-01604-0   Google Scholar

Ansarifar, J., Wang, L., & Archontoulis, S. V. (2021). An interaction regression model for crop yield prediction. Scientific Reports, 11, 17754. https://doi.org/10.1038/s41598-021-97221-7
DOI: https://doi.org/10.1038/s41598-021-97221-7   Google Scholar

Yu Arkhipova, M., & Smirnov, A. I. (2020). Current trends in crop yield forecasting based on the use of econometric models. Voprosy Statistiki, 27(5), 65–75. https://doi.org/10.34023/2313-6383-2020-27-5-65-75
DOI: https://doi.org/10.34023/2313-6383-2020-27-5-65-75   Google Scholar

Beisekenov, N. A., Anuarbekov, T. B., Sadenova, M. A., Varbanov, P. S., Klemes. J. J., & Wang, J. (2021). Machine learning model identification for forecasting of soya crop yields in Kazakhstan. 2021 6th International Conference on Smart and Sustainable Technologies (SpliTech) (pp. 1–6). IEEE. https://doi.org/10.23919/SpliTech52315.2021.9566376
DOI: https://doi.org/10.23919/SpliTech52315.2021.9566376   Google Scholar

Booranawong, T., & Booranawong, A. (2017). An exponentially weighted moving average method with designed input data assignments for forecasting lime prices in Thailand. Jurnal Teknologi, 79(6), 53-60. https://doi.org/10.11113/jt.v79.10096
DOI: https://doi.org/10.11113/jt.v79.10096   Google Scholar

Bureau of National Statistics of Kazakhstan. (2022). Statistics of agriculture. forestry. hunting and fisheries. https://stat.gov.kz/en/industries/business-statistics/stat-forrest-village-hunt-fish/
  Google Scholar

Conradt, T. (2022). Choosing multiple linear regressions for weather-based crop yield prediction with ABSOLUT v1.2 applied to the districts of Germany. International Journal of Biometeorology, 66, 2287–2300. https://doi.org/10.1007/s00484-022-02356-5
DOI: https://doi.org/10.1007/s00484-022-02356-5   Google Scholar

Dahikar, S. S., & Rode, S. V. (2014). Agricultural crop yield prediction using artificial neural network approach miss. International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering, 2(1), 683-686. https://api.semanticscholar.org/CorpusID:16167655
  Google Scholar

Dharmaraja, S., Jain, V., Anjoy, P., & Chandra, H. (2020). Empirical analysis for crop yield forecasting in India. Agricultural Research, 9, 132–138. https://doi.org/10.1007/s40003-019-00413-x
DOI: https://doi.org/10.1007/s40003-019-00413-x   Google Scholar

Duisenbekova, A., & Daniłowska, A. (2021). Assessment of food security in the east Kazakhstan region. Zeszyty Naukowe SGGW w Warszawie, 21(3), 4–13. https://doi.org/10.22630/PRS.2021.21.3.9
DOI: https://doi.org/10.22630/PRS.2021.21.3.9   Google Scholar

Fan, C., Cao, P. G., Yang, T. J., & Fu, H. L. (2016). Research on the prediction model of grain yield based on the ARIMA method. 2015 4th International Conference on Sensors. Measurement and Intelligent Materials (ICSMIM 2015) (pp. 454–458). Atlantis Press. https://doi.org/10.2991/icsmim-15.2016.84
DOI: https://doi.org/10.2991/icsmim-15.2016.84   Google Scholar

Guo, W. W., & Xue, H. (2014). Crop yield forecasting using artificial neural networks: a comparison between spatial and temporal models. Mathematical Problems in Engineering, 2014, 857865. https://doi.org/10.1155/2014/857865
DOI: https://doi.org/10.1155/2014/857865   Google Scholar

Hemavathi, M., & Prabakaran, K. (2018). ARIMA model for forecasting of area. production and productivity of rice and its growth status in thanjavur district of Tamil Nadu, India. International Journal of Current Microbiology and Applied Sciences, 7(2), 149–156. https://doi.org/10.20546/ijcmas.2018.702.019
DOI: https://doi.org/10.20546/ijcmas.2018.702.019   Google Scholar

Islyami, A., Aldashev, A., Thomas, T. S., & Dunston, S. (2020). Impact of climate change on agriculture in Kazakhstan. Silk Road: A Journal of Eurasian Development, 2(1), 66–88. https://doi.org/10.16997/srjed.19
DOI: https://doi.org/10.16997/srjed.19   Google Scholar

Alani, L. A. F., & Alhiyali, A. D. K. (2021). Forecasting wheat productivity in Iraq for the period 2019-2025 using markov chains. ‬Iraqi Journal of Agricultural Sciences, 52(2), 411–421. https://doi.org/10.36103/ijas.v52i2.1302
DOI: https://doi.org/10.36103/ijas.v52i2.1302   Google Scholar

Kim, T., Solanki, V. S., Baraiya, H. J., Mitra, A., Shah, H., & Roy, S. (2020). A smart. sensible agriculture system using the exponential moving average model. Symmetry, 12(3), 457. https://doi.org/10.3390/sym12030457
DOI: https://doi.org/10.3390/sym12030457   Google Scholar

Levin, E., Beisekenov, N., Wilson, M., Sadenova, M., Nabaweesi, R., & Nguyen, L. (2023). Empowering climate resilience: Leveraging cloud computing and big data for community Climate Change Impact Service (C3IS). Remote Sensing, 15(21), 5160. https://doi.org/10.3390/rs15215160
DOI: https://doi.org/10.3390/rs15215160   Google Scholar

Lwaho, J., & Ilembo, B. (2023). Unfolding the potential of the ARIMA model in forecasting maize production in Tanzania. Business Analyst Journal, 44(2), 128-139. https://doi.org/10.1108/BAJ-07-2023-0055
DOI: https://doi.org/10.1108/BAJ-07-2023-0055   Google Scholar

Murugan, R., Thomas, F. S., Geetha Shree, G., Glory, S., & Shilpa, A. (2020). Linear regression approach to predict crop yield. Asian Journal of Computer Science and Technology, 9(1), 40–44. https://doi.org/10.51983/ajcst-2020.9.1.2152
DOI: https://doi.org/10.51983/ajcst-2020.9.1.2152   Google Scholar

Nhu, A., Sahajpal, R., Justice, C., & Becker-Reshef, I. (2023). Improve state-level wheat yield forecasts in Kazakhstan on GEOGLAM’s EO data by leveraging a simple Spatial-Aware Technique. ArXiv, abs/2306.04646. https://doi.org/10.48550/arXiv.2306.04646
  Google Scholar

Okorie, I. E., Afuecheta, E., & Nadarajah, S. (2023). Time series and power law analysis of crop yield in some east African countries. PLOS ONE, 18(6), e0287011. https://doi.org/10.1371/journal.pone.0287011
DOI: https://doi.org/10.1371/journal.pone.0287011   Google Scholar

Rai, S., Nandre, J., & Kanawade, B. R. (2022). A comparative analysis of crop yield prediction using regression. 2022 2nd International Conference on Intelligent Technologies (CONIT) (pp. 1–4). IEEE. https://doi.org/10.1109/CONIT55038.2022.9847783
DOI: https://doi.org/10.1109/CONIT55038.2022.9847783   Google Scholar

Rathod, S., Singh, K. N., Patil, S. G., Naik, R. H., Ray, M., & Meena, V. S. (2018). Modeling and forecasting of oilseed production of India through artificial intelligence techniques. The Indian Journal of Agricultural Sciences, 88(1), 22–27. https://doi.org/10.56093/ijas.v88i1.79546
DOI: https://doi.org/10.56093/ijas.v88i1.79546   Google Scholar

Rathod, S., Singh, K., Arya, P., Ray, M., Mukherjee, A., Sinha, K., Kumar, P., & Shekhawat, R. S. (2017). Forecasting maize yield using ARIMA-Genetic Algorithm approach. Outlook on Agriculture, 46(4), 265–271. https://doi.org/10.1177/0030727017744933
DOI: https://doi.org/10.1177/0030727017744933   Google Scholar

Romanovska, P., Schauberger, B., & Gornott, C. (2023). Wheat yields in Kazakhstan can successfully be forecasted using a statistical crop model. European Journal of Agronomy, 147, 126843. https://doi.org/10.1016/j.eja.2023.126843
DOI: https://doi.org/10.1016/j.eja.2023.126843   Google Scholar

Sadenova, M. A., Beisekenov, N. A., Rakhymberdina, M. Y., Varbanov, P. S., & Klemeš, J. J. (2021). Mathematical modelling in crop production to predict crop yields. Chemical Engineering Transactions, 88, 1225–1230. https://doi.org/10.3303/CET2188204
  Google Scholar

Sadenova, M., Beisekenov, N., Varbanov, P. S., & Pan, T. (2023). Application of machine learning and neural networks to predict the yield of cereals, legumes, oilseeds and forage crops in Kazakhstan. Agriculture, 13(6), 1195. https://doi.org/10.3390/agriculture13061195
DOI: https://doi.org/10.3390/agriculture13061195   Google Scholar

Sellam, V., & Poovammal, E. (2016). Prediction of crop yield using regression analysis. Indian Journal of Science and Technology, 9(38), 1-5. https://doi.org/10.17485/ijst/2016/v9i38/91714
DOI: https://doi.org/10.17485/ijst/2016/v9i38/91714   Google Scholar

Senthamarai Kannan, K., & Karuppasamy, K. M. (2020). Forecasting for agricultural production using Arima Model. PalArch’s Journal of Archaeology of Egypt / Egyptology, 17(9), 5939–5949.
  Google Scholar

Sharma, P. K., Dwivedi, S., Ali, L., & Arora, R. K. (2018). Forecasting maize production in India using ARIMA model, Agro Economist, 5(1), 1-6.
  Google Scholar

Suieubayeva, S., Denissova, O., Kabdulsharipova, A., & Idikut Ozpenсe, A. (2022). The agricultural sector in the Republic of Kazakhstan: Analysis of the state, problems and ways of solution. Eurasian Journal of Economic and Business Studies, 66(4), 19–31. https://doi.org/10.47703/ejebs.v4i66.185
DOI: https://doi.org/10.47703/ejebs.v4i66.185   Google Scholar

Wing, I. S., De Cian, E., & Mistry, M. N. (2021). Global vulnerability of crop yields to climate change. Journal of Environmental Economics and Management, 109, 102462. https://doi.org/10.1016/j.jeem.2021.102462
DOI: https://doi.org/10.1016/j.jeem.2021.102462   Google Scholar

Yildirim, T., Moriasi, D. N., Starks, P. J., & Chakraborty, D. (2022). Using artificial neural network (ANN) for short-range prediction of cotton yield in Data-Scarce regions. Agronomy, 12(4), 828. https://doi.org/10.3390/agronomy12040828
DOI: https://doi.org/10.3390/agronomy12040828   Google Scholar

Yun, S. D., & Gramig, B. M. (2022). Spatial panel models of crop yield response to weather: Econometric specification strategies and prediction performance. Journal of Agricultural and Applied Economics, 54(1), 53–71. https://doi.org/10.1017/aae.2021.29
DOI: https://doi.org/10.1017/aae.2021.29   Google Scholar

Zhao, Y., Vergopolan, N., Baylis, K., Blekking, J., Caylor, K., Evans, T., Giroux, S., Sheffield, J., & Estes, L. (2018). Comparing empirical and survey-based yield forecasts in a dryland agro-ecosystem. Agricultural and Forest Meteorology, 262, 147–156. https://doi.org/10.1016/j.agrformet.2018.06.024
DOI: https://doi.org/10.1016/j.agrformet.2018.06.024   Google Scholar

Download


Published
2024-01-05

Cited by

KULISZ, M., DUISENBEKOVA, A., KUJAWSKA, J., KALDYBAYEVA, D., ISSAYEVA, B., LICHOGRAJ, P., & CEL, W. (2024). IMPLICATIONS OF NEURAL NETWORK AS A DECISION-MAKING TOOL IN MANAGING KAZAKHSTAN’S AGRICULTURAL ECONOMY. Applied Computer Science, 19(4), 121–135. https://doi.org/10.35784/acs-2023-39

Authors

Monika KULISZ 
m.kulisz@kop.pollub.pl
Lublin University of Technology, Faculty of Management, Department of Organization of Enterprise Poland
https://orcid.org/0000-0002-8111-2316

Authors

Aigerim DUISENBEKOVA 

L.N. Gumilyov Eurasian National University, Faculty of Economics, Department of Economics and Entrepreneurship, D.Serikbayev East Kazakhstan Technical University, School of Architecture, Civil Engineering and Energy, Kazakhstan
https://orcid.org/0000-0001-9167-8076

Authors

Justyna KUJAWSKA 

Lublin University of Technology, Faculty of Environmental Engineering, Department of Biomass and Waste Conversion into Biofuels Poland
https://orcid.org/0000-0002-4809-2472

Authors

Danira KALDYBAYEVA 

L.N. Gumilyov Eurasian National University, Faculty of Economics, Department of Economics and Entrepreneurship Kazakhstan
https://orcid.org/0000-0002-4370-4126

Authors

Bibigul ISSAYEVA 

L.N. Gumilyov Eurasian National University, Faculty of Economics, Department of Economics and Entrepreneurship Kazakhstan
https://orcid.org/0000-0002-8109-2896

Authors

Piotr LICHOGRAJ 

John Paul II University of Applied Sciences in Biala Podlaska, Department of Technical Sciences, Poland

Authors

Wojciech CEL 

Lublin University of Technology, Faculty of Environmental Engineering, Department of Renewable Energy Engineering Poland

Statistics

Abstract views: 363
PDF downloads: 129


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.