IMPLICATIONS OF NEURAL NETWORK AS A DECISION-MAKING TOOL IN MANAGING KAZAKHSTAN’S AGRICULTURAL ECONOMY
Article Sidebar
Open full text
Issue Vol. 19 No. 4 (2023)
-
ENHANCING THE EFFICIENCY OF THE LEVENSHTEIN DISTANCE BASED HEURISTIC METHOD OF ARRANGING 2D APICTORIAL ELEMENTS FOR INDUSTRIAL APPLICATIONS
Stanisław SKULIMOWSKI, Jerzy MONTUSIEWICZ, Marcin BADUROWICZ1-13
-
AUTOMATIC IDENTIFICATION OF DYSPHONIAS USING MACHINE LEARNING ALGORITHMS
Miguel Angel BELLO RIVERA, Carlos Alberto REYES GARCÍA, Tania Cristal TALAVERA ROJAS, Perfecto Malaquías QUINTERO FLORES, Rodolfo Eleazar PÉREZ LOAIZA14-25
-
COMPUTATIONAL ANALYSIS OF PEM FUEL CELL UNDER DIFFERENT OPERATING CONDITIONS
Tomasz SEDERYN, Małgorzata SKAWIŃSKA26-38
-
IMPROVING MATERIAL REQUIREMENTS PLANNING THROUGH WEB-BASED: A CASE STUDY THAILAND SMEs
Pornsiri KHUMLA, Kamthorn SARAWAN39-50
-
PREDICTIVE TOOLS AS PART OF DECISSION AIDING PROCESSES AT THE AIRPORT – THE CASE OF FACEBOOK PROPHET LIBRARY
Sylwester KORGA, Kamil ŻYŁA, Jerzy JÓZWIK, Jarosław PYTKA, Kamil CYBUL51-67
-
IDENTIFYING THE POTENTIAL OF UNMANNED AERIAL VEHICLE ROUTING FOR BLOOD DISTRIBUTION IN EMERGENCY REQUESTS
Janani DEWMINI, W Madushan FERNANDO, Izabela Iwa NIELSEN, Grzegorz BOCEWICZ, Amila THIBBOTUWAWA, Zbigniew BANASZAK68-87
-
EFFICIENCY COMPARISON OF NETWORKS IN HANDWRITTEN LATIN CHARACTERS RECOGNITION WITH DIACRITICS
Edyta ŁUKASIK, Wiktor FLIS88-102
-
THE EFFECT OF INFORMATION TECHNOLOGY AND ENTREPRENEURSHIP ON THE E-SERVICES QUALITY THAT HAVE AN IMPACT ON CUSTOMER VALUE: EVIDENCE FROM INDONESIA SMEs
Ferra Arik TRIDALESTARI, Hanung Nindito PRASETYO103-120
-
IMPLICATIONS OF NEURAL NETWORK AS A DECISION-MAKING TOOL IN MANAGING KAZAKHSTAN’S AGRICULTURAL ECONOMY
Monika KULISZ, Aigerim DUISENBEKOVA, Justyna KUJAWSKA, Danira KALDYBAYEVA, Bibigul ISSAYEVA, Piotr LICHOGRAJ, Wojciech CEL121-135
-
COMPARISON OF SELECTED CLASSIFICATION METHODS BASED ON MACHINE LEARNING AS A DIAGNOSTIC TOOL FOR KNEE JOINT CARTILAGE DAMAGE BASED ON GENERATED VIBROACOUSTIC PROCESSES
Robert KARPIŃSKI, Przemysław KRAKOWSKI, Józef JONAK, Anna MACHROWSKA, Marcin MACIEJEWSKI136-150
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
Main Article Content
DOI
Authors
aigerim.duisenbekova95@gmail.com
p.lichograj@dyd.akademiabialska.pl
Abstract
This study investigates the application of Artificial Neural Networks (ANN) in forecasting agricultural yields in Kazakhstan, highlighting its implications for economic management and policy-making. Utilizing data from the Bureau of National Statistics of the Republic of Kazakhstan (2000-2023), the research develops two ANN models using the Neural Net Fitting library in MATLAB. The first model predicts the total gross yield of main agricultural crops, while the second forecasts the share of individual crops, including cereals, oilseeds, potatoes, vegetables, melons, and sugar beets. The models demonstrate high accuracy, with the total gross yield model achieving an R-squared value of 0.98 and the individual crop model showing an R value of 0.99375. These results indicate a strong predictive capability, essential for practical agricultural and economic planning. The study extends previous research by incorporating a comprehensive range of climatic and agrochemical data, enhancing the precision of yield predictions. The findings have significant implications for Kazakhstan's economy. Accurate yield predictions can optimize agricultural planning, contribute to food security, and inform policy decisions. The successful application of ANN models showcases the potential of AI and machine learning in agriculture, suggesting a pathway towards more efficient, sustainable farming practices and improved quality management systems.
Keywords:
References
Annamalai, N., & Johnson, A. (2023). Analysis and forecasting of area under cultivation of rice in India: Univariate time series approach. SN Computer Science, 4, 193. https://doi.org/10.1007/s42979-022-01604-0 DOI: https://doi.org/10.1007/s42979-022-01604-0
Ansarifar, J., Wang, L., & Archontoulis, S. V. (2021). An interaction regression model for crop yield prediction. Scientific Reports, 11, 17754. https://doi.org/10.1038/s41598-021-97221-7 DOI: https://doi.org/10.1038/s41598-021-97221-7
Yu Arkhipova, M., & Smirnov, A. I. (2020). Current trends in crop yield forecasting based on the use of econometric models. Voprosy Statistiki, 27(5), 65–75. https://doi.org/10.34023/2313-6383-2020-27-5-65-75 DOI: https://doi.org/10.34023/2313-6383-2020-27-5-65-75
Beisekenov, N. A., Anuarbekov, T. B., Sadenova, M. A., Varbanov, P. S., Klemes. J. J., & Wang, J. (2021). Machine learning model identification for forecasting of soya crop yields in Kazakhstan. 2021 6th International Conference on Smart and Sustainable Technologies (SpliTech) (pp. 1–6). IEEE. https://doi.org/10.23919/SpliTech52315.2021.9566376 DOI: https://doi.org/10.23919/SpliTech52315.2021.9566376
Booranawong, T., & Booranawong, A. (2017). An exponentially weighted moving average method with designed input data assignments for forecasting lime prices in Thailand. Jurnal Teknologi, 79(6), 53-60. https://doi.org/10.11113/jt.v79.10096 DOI: https://doi.org/10.11113/jt.v79.10096
Bureau of National Statistics of Kazakhstan. (2022). Statistics of agriculture. forestry. hunting and fisheries. https://stat.gov.kz/en/industries/business-statistics/stat-forrest-village-hunt-fish/
Conradt, T. (2022). Choosing multiple linear regressions for weather-based crop yield prediction with ABSOLUT v1.2 applied to the districts of Germany. International Journal of Biometeorology, 66, 2287–2300. https://doi.org/10.1007/s00484-022-02356-5 DOI: https://doi.org/10.1007/s00484-022-02356-5
Dahikar, S. S., & Rode, S. V. (2014). Agricultural crop yield prediction using artificial neural network approach miss. International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering, 2(1), 683-686. https://api.semanticscholar.org/CorpusID:16167655
Dharmaraja, S., Jain, V., Anjoy, P., & Chandra, H. (2020). Empirical analysis for crop yield forecasting in India. Agricultural Research, 9, 132–138. https://doi.org/10.1007/s40003-019-00413-x DOI: https://doi.org/10.1007/s40003-019-00413-x
Duisenbekova, A., & Daniłowska, A. (2021). Assessment of food security in the east Kazakhstan region. Zeszyty Naukowe SGGW w Warszawie, 21(3), 4–13. https://doi.org/10.22630/PRS.2021.21.3.9 DOI: https://doi.org/10.22630/PRS.2021.21.3.9
Fan, C., Cao, P. G., Yang, T. J., & Fu, H. L. (2016). Research on the prediction model of grain yield based on the ARIMA method. 2015 4th International Conference on Sensors. Measurement and Intelligent Materials (ICSMIM 2015) (pp. 454–458). Atlantis Press. https://doi.org/10.2991/icsmim-15.2016.84 DOI: https://doi.org/10.2991/icsmim-15.2016.84
Guo, W. W., & Xue, H. (2014). Crop yield forecasting using artificial neural networks: a comparison between spatial and temporal models. Mathematical Problems in Engineering, 2014, 857865. https://doi.org/10.1155/2014/857865 DOI: https://doi.org/10.1155/2014/857865
Hemavathi, M., & Prabakaran, K. (2018). ARIMA model for forecasting of area. production and productivity of rice and its growth status in thanjavur district of Tamil Nadu, India. International Journal of Current Microbiology and Applied Sciences, 7(2), 149–156. https://doi.org/10.20546/ijcmas.2018.702.019 DOI: https://doi.org/10.20546/ijcmas.2018.702.019
Islyami, A., Aldashev, A., Thomas, T. S., & Dunston, S. (2020). Impact of climate change on agriculture in Kazakhstan. Silk Road: A Journal of Eurasian Development, 2(1), 66–88. https://doi.org/10.16997/srjed.19 DOI: https://doi.org/10.16997/srjed.19
Alani, L. A. F., & Alhiyali, A. D. K. (2021). Forecasting wheat productivity in Iraq for the period 2019-2025 using markov chains. Iraqi Journal of Agricultural Sciences, 52(2), 411–421. https://doi.org/10.36103/ijas.v52i2.1302 DOI: https://doi.org/10.36103/ijas.v52i2.1302
Kim, T., Solanki, V. S., Baraiya, H. J., Mitra, A., Shah, H., & Roy, S. (2020). A smart. sensible agriculture system using the exponential moving average model. Symmetry, 12(3), 457. https://doi.org/10.3390/sym12030457 DOI: https://doi.org/10.3390/sym12030457
Levin, E., Beisekenov, N., Wilson, M., Sadenova, M., Nabaweesi, R., & Nguyen, L. (2023). Empowering climate resilience: Leveraging cloud computing and big data for community Climate Change Impact Service (C3IS). Remote Sensing, 15(21), 5160. https://doi.org/10.3390/rs15215160 DOI: https://doi.org/10.3390/rs15215160
Lwaho, J., & Ilembo, B. (2023). Unfolding the potential of the ARIMA model in forecasting maize production in Tanzania. Business Analyst Journal, 44(2), 128-139. https://doi.org/10.1108/BAJ-07-2023-0055 DOI: https://doi.org/10.1108/BAJ-07-2023-0055
Murugan, R., Thomas, F. S., Geetha Shree, G., Glory, S., & Shilpa, A. (2020). Linear regression approach to predict crop yield. Asian Journal of Computer Science and Technology, 9(1), 40–44. https://doi.org/10.51983/ajcst-2020.9.1.2152 DOI: https://doi.org/10.51983/ajcst-2020.9.1.2152
Nhu, A., Sahajpal, R., Justice, C., & Becker-Reshef, I. (2023). Improve state-level wheat yield forecasts in Kazakhstan on GEOGLAM’s EO data by leveraging a simple Spatial-Aware Technique. ArXiv, abs/2306.04646. https://doi.org/10.48550/arXiv.2306.04646
Okorie, I. E., Afuecheta, E., & Nadarajah, S. (2023). Time series and power law analysis of crop yield in some east African countries. PLOS ONE, 18(6), e0287011. https://doi.org/10.1371/journal.pone.0287011 DOI: https://doi.org/10.1371/journal.pone.0287011
Rai, S., Nandre, J., & Kanawade, B. R. (2022). A comparative analysis of crop yield prediction using regression. 2022 2nd International Conference on Intelligent Technologies (CONIT) (pp. 1–4). IEEE. https://doi.org/10.1109/CONIT55038.2022.9847783 DOI: https://doi.org/10.1109/CONIT55038.2022.9847783
Rathod, S., Singh, K. N., Patil, S. G., Naik, R. H., Ray, M., & Meena, V. S. (2018). Modeling and forecasting of oilseed production of India through artificial intelligence techniques. The Indian Journal of Agricultural Sciences, 88(1), 22–27. https://doi.org/10.56093/ijas.v88i1.79546 DOI: https://doi.org/10.56093/ijas.v88i1.79546
Rathod, S., Singh, K., Arya, P., Ray, M., Mukherjee, A., Sinha, K., Kumar, P., & Shekhawat, R. S. (2017). Forecasting maize yield using ARIMA-Genetic Algorithm approach. Outlook on Agriculture, 46(4), 265–271. https://doi.org/10.1177/0030727017744933 DOI: https://doi.org/10.1177/0030727017744933
Romanovska, P., Schauberger, B., & Gornott, C. (2023). Wheat yields in Kazakhstan can successfully be forecasted using a statistical crop model. European Journal of Agronomy, 147, 126843. https://doi.org/10.1016/j.eja.2023.126843 DOI: https://doi.org/10.1016/j.eja.2023.126843
Sadenova, M. A., Beisekenov, N. A., Rakhymberdina, M. Y., Varbanov, P. S., & Klemeš, J. J. (2021). Mathematical modelling in crop production to predict crop yields. Chemical Engineering Transactions, 88, 1225–1230. https://doi.org/10.3303/CET2188204
Sadenova, M., Beisekenov, N., Varbanov, P. S., & Pan, T. (2023). Application of machine learning and neural networks to predict the yield of cereals, legumes, oilseeds and forage crops in Kazakhstan. Agriculture, 13(6), 1195. https://doi.org/10.3390/agriculture13061195 DOI: https://doi.org/10.3390/agriculture13061195
Sellam, V., & Poovammal, E. (2016). Prediction of crop yield using regression analysis. Indian Journal of Science and Technology, 9(38), 1-5. https://doi.org/10.17485/ijst/2016/v9i38/91714 DOI: https://doi.org/10.17485/ijst/2016/v9i38/91714
Senthamarai Kannan, K., & Karuppasamy, K. M. (2020). Forecasting for agricultural production using Arima Model. PalArch’s Journal of Archaeology of Egypt / Egyptology, 17(9), 5939–5949.
Sharma, P. K., Dwivedi, S., Ali, L., & Arora, R. K. (2018). Forecasting maize production in India using ARIMA model, Agro Economist, 5(1), 1-6.
Suieubayeva, S., Denissova, O., Kabdulsharipova, A., & Idikut Ozpenсe, A. (2022). The agricultural sector in the Republic of Kazakhstan: Analysis of the state, problems and ways of solution. Eurasian Journal of Economic and Business Studies, 66(4), 19–31. https://doi.org/10.47703/ejebs.v4i66.185 DOI: https://doi.org/10.47703/ejebs.v4i66.185
Wing, I. S., De Cian, E., & Mistry, M. N. (2021). Global vulnerability of crop yields to climate change. Journal of Environmental Economics and Management, 109, 102462. https://doi.org/10.1016/j.jeem.2021.102462 DOI: https://doi.org/10.1016/j.jeem.2021.102462
Yildirim, T., Moriasi, D. N., Starks, P. J., & Chakraborty, D. (2022). Using artificial neural network (ANN) for short-range prediction of cotton yield in Data-Scarce regions. Agronomy, 12(4), 828. https://doi.org/10.3390/agronomy12040828 DOI: https://doi.org/10.3390/agronomy12040828
Yun, S. D., & Gramig, B. M. (2022). Spatial panel models of crop yield response to weather: Econometric specification strategies and prediction performance. Journal of Agricultural and Applied Economics, 54(1), 53–71. https://doi.org/10.1017/aae.2021.29 DOI: https://doi.org/10.1017/aae.2021.29
Zhao, Y., Vergopolan, N., Baylis, K., Blekking, J., Caylor, K., Evans, T., Giroux, S., Sheffield, J., & Estes, L. (2018). Comparing empirical and survey-based yield forecasts in a dryland agro-ecosystem. Agricultural and Forest Meteorology, 262, 147–156. https://doi.org/10.1016/j.agrformet.2018.06.024 DOI: https://doi.org/10.1016/j.agrformet.2018.06.024
Article Details
Abstract views: 686
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
