UTILISATION OF EVOLUTION ALGORITHM IN PRODUCTION LAYOUT DESIGN
Martin KRAJČOVIČ
martin.krajcovic@fstroj.uniza.skDepartment of Industrial Engineering, Faculty of Mechanical Engineering, University of Zilina (Slovakia)
Patrik GRZNÁR
-------- (Slovakia)
Abstract
The need for flexibility of layout planning puts higher requirements for utilisation of layout and location problem solving methods. Classical methods, like linear programming, dynamic programming or conventional heuristics are being replaced by advanced evolutionary algorithms, which give better solutions to large-scale problems. One of these methods are also genetic algorithms. This article describes the genetic algorithm utilisation in the production layout planningunder the terms of the digital factory concept.
Keywords:
production layout, material flow optimisation, heuristics, genetic algorithmsReferences
Altuntas, S., & Selim, H. (2012). Facility Layout using Weighted Association Rule-based Data Mining Algorithms: Evaluation with Simulation. Expert Systems with Applications, 39(1), 2012, 3–13. https://doi.org/10.1016/j.eswa.2011.06.045
DOI: https://doi.org/10.1016/j.eswa.2011.06.045
Google Scholar
Dulina, L., & Bartánusová, M. (2014). Ergonomics in Practice and its Influence on Employees’ Performance. Communications - Scientific Letters of the University of Zilina, 16(3), 206–211.
DOI: https://doi.org/10.26552/com.C.2014.3A.206-211
Google Scholar
Ďurica, L., Mičieta, B., Bubeník, P., & Biňasová, V. (2015). Manufacturing multi-agent system with bio-inspired techniques: CODESA-Prime. MM science journal, December 2015, 829–837. https://doi.org/10.17973/MMSJ.2015_12_201543
DOI: https://doi.org/10.17973/MMSJ.2015_12_201543
Google Scholar
Furmann, R., & Štefánik, A.(2011).Progressive Solutions Supporting Manufacturing and Logistics Systems Design Developed by CEIT SK, s.r.o. (in Slovak). Produktivita a inovácie: bimonthly magazine of University of Žilina in cooperation with the Slovak productivity center and the Institute for Competitiveness and Innovation, 12(2), 3–5.
Google Scholar
Gašová, M., Gašo, M., & Štefánik, A. (2017). Document Advanced Industrial Tools of Ergonomics Based on Industry 4.0 Concept. Procedia Engineering, 192, 219–224. https://doi.org/10.1016/j.proeng.2017.06.038
DOI: https://doi.org/10.1016/j.proeng.2017.06.038
Google Scholar
Hančinský, V., & Krajčovič, M. (2014). Genetic Algorithms and their Utilization in Production Scheduling (in Slovak). In Průmyslové inženýrství 2014. International student scientific conference, Kouty nad Desnou: SmartMotion (pp. 49–55).
Google Scholar
Hnát, J. (2012).Virtual Factory Framework. In Industrial Engineering Moves the World – InvEnt 2012 (pp. 56–59). Zilina: University of Zilina.
Google Scholar
Krajčovič, M. (2011). Modern Approaches of Manufacturing and Logistics Systems Design (in Slovak). IN Digitalny podnik – cesta k buducnosti zbornik prednasok: CEIT SK, 2011.
Google Scholar
Krajčovič, M., & Hančinský, V. (2015). Production layout planning using genetic algorithms. Communications : scientific Letters of the University of Žilina, 17(3), 72–77.
DOI: https://doi.org/10.26552/com.C.2015.3.72-77
Google Scholar
Krajčovič, M., Bulej, V., Sapietova, A., & Kuric, I. (2013). Intelligent Manufacturing Systems in Concept of Digital Factory. Communications - Scientific Letters of the University of Zilina, 15(2), 77–87.
DOI: https://doi.org/10.26552/com.C.2013.2.77-87
Google Scholar
Li, J., & Meerkov, S. M. (2009). Production Systems Engineering. New York: Springer.
DOI: https://doi.org/10.1007/978-0-387-75579-3
Google Scholar
Mičieta, B., Biňasová, V., & Haluška, M.(2014). The Approaches of Advanced Industrial Engineering in Next Generation Manufacturing Systems. Communications – Scientific Letters of the University of Zilina, 16(3), 101–105.
DOI: https://doi.org/10.26552/com.C.2014.3A.101-105
Google Scholar
Mičieta, B., Dulina, Ľ., Malcho, M. (2005). Main factors of the selection jobs for the work study. In: Annals of DAAAM for 2005 & Proceedings of the 16th International DAAAM Symposium: Manufacturing & automation: Focus on young researches and scientists (pp. 249–250). Vienna: DAAAM International.
Google Scholar
Misola, M. G., & Navarro, B. B. (2013). Optimal Facility Layout Problem Solution using Genetic Algorithm. International Journal of Mechanical, Industrial Science and Engineering, 7(8), 622–627.
Google Scholar
Rakyta, M., Fusko, M., Herčko, J., Závodská, L., & Zrnić, N. (2016). Proactive approach to smart maintenance and logistics as a auxiliary and service processes in a company. Journal of Applied Engineering Science, 14(4), 433–442.
DOI: https://doi.org/10.5937/jaes14-11664
Google Scholar
Saleh, N. F. B., & Hussain, A. R. B. (2013, October). Genetic Algorithms for Optimizing Manufacturing Facility Layout. Retrieved from http://comp.utm.my/pars/files/2013/04/GeneticAlgorithms-for-Optimizing-Manufacturing-Facility-Layout.pdf
Google Scholar
Strapek, M., Hořejší, P., & Polcar, J. (2016). 3D laser scanned data processing possibilities for production floors models. IN Proceedings of the 28th International Business Information Management Association Conference (pp. 2920–2930). Norristown: International Business Information Management Association
Google Scholar
Trebuňa, P., Kliment, M., Edl, M., & Petrik, M. (2014). Creation of simulation model of expansion of production in manufacturing companies. Procedia Engineering, 96, 477–482.
DOI: https://doi.org/10.1016/j.proeng.2014.12.118
Google Scholar
Xu, L., Yang, S., Li, A., & Matta, A. (2011). An Adaptive Genetic Algorithm for Facility Problem in Cylinder Block Line. In Computer Science and Automation Engineering (CSAE), 2011 IEEE International Conference (pp. 749–753). IEEE. https://doi.org/10.1109/CSAE.2011.5952782
DOI: https://doi.org/10.1109/CSAE.2011.5952782
Google Scholar
Yang, T., Zhang, D., Chen, B., & Li, S. (2008). Research on plant layout and production line running simulation in digital factory environment. In Pacific-Asia workshop on computational intelligence and industrial application (vol. 2, pp. 588–593). IEEE. https://doi.org/10.1109/PACIIA.2008.159
DOI: https://doi.org/10.1109/PACIIA.2008.159
Google Scholar
Authors
Martin KRAJČOVIČmartin.krajcovic@fstroj.uniza.sk
Department of Industrial Engineering, Faculty of Mechanical Engineering, University of Zilina Slovakia
Authors
Patrik GRZNÁR-------- Slovakia
Statistics
Abstract views: 100PDF downloads: 7
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Most read articles by the same author(s)
- Damian KOLNY, Dorota WIĘCEK, Paweł ZIOBRO, Martin KRAJČOVIČ, APPLICATION OF A COMPUTER TOOL MONITORING SYSTEM IN CNC MACHINING CENTRES , Applied Computer Science: Vol. 13 No. 4 (2017)
- Dariusz PLINTA, Martin KRAJČOVIČ, APPLICATION OF THE AUGMENTED REALITY IN PRODUCTION PRACTICE , Applied Computer Science: Vol. 13 No. 2 (2017)
Similar Articles
- Damian GIEBAS, Rafał WOJSZCZYK, GRAPHICAL REPRESENTATIONS OF MULTITHREADED APPLICATIONS , Applied Computer Science: Vol. 14 No. 2 (2018)
- Sebastian BIAŁASZ, Ramon PAMIES, NUMERICAL SIMULATION OF THE DESIGN OF EXTRUSION PROCESS OF POLYMERIC MINI-TUBES , Applied Computer Science: Vol. 14 No. 3 (2018)
- Andrij MILENIN, PARALLEL SOLUTION OF THERMOMECHANICAL INVERSE PROBLEMS FOR LASER DIELESS DRAWING OF ULTRA-THIN WIRE , Applied Computer Science: Vol. 18 No. 3 (2022)
- Paweł MAGRYTA, Grzegorz BARAŃSKI, SIMULATION OF TORQUE VARIATIONS IN A DIESEL ENGINE FOR LIGHT HELICOPTERS USING PI CONTROL ALGORITHMS , Applied Computer Science: Vol. 20 No. 3 (2024)
- Sunil Kumar B L, Sharmila Kumari M, RGB-D FACE RECOGNITION USING LBP-DCT ALGORITHM , Applied Computer Science: Vol. 17 No. 3 (2021)
- Jakub ANCZARSKI, Adrian BOCHEN, MArcin GŁĄB, Mikolaj JACHOWICZ, Jacek CABAN, Radosław CECHOWICZ, A METHOD OF VERIFYING THE ROBOT'S TRAJECTORY FOR GOALS WITH A SHARED WORKSPACE , Applied Computer Science: Vol. 18 No. 1 (2022)
- Józef MATUSZEK, Tomasz SENETA, Aleksander MOCZAŁA, FUZZY ASSESSMENT OF MANUFACTURABILITY DESIGN FOR MACHINING , Applied Computer Science: Vol. 15 No. 3 (2019)
- Rawaa HAAMED, Ekhlas HAMEED, CONTROLLING THE MEAN ARTERIAL PRESSURE BY MODIFIED MODEL REFERENCE ADAPTIVE CONTROLLER BASED ON TWO OPTIMIZATION ALGORITHMS , Applied Computer Science: Vol. 16 No. 2 (2020)
- Raphael Olufemi AKINYEDE, Temitayo Elijah BALOGUN, Abiodun Boluwade ROTIMI, Oluwasefunmi Busola FAMODIMU, A CUSTOMER-CENTRIC APPLICATION FOR A CINEMA HOUSE , Applied Computer Science: Vol. 16 No. 2 (2020)
- Jarosław WIKAREK, Paweł SITEK, Mieczysław JAGODZIŃSKI, A DECLARATIVE APPROACH TO SHOP ORDERS OPTIMIZATION , Applied Computer Science: Vol. 15 No. 4 (2019)
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.