APPLICATION OF A COMPUTER TOOL MONITORING SYSTEM IN CNC MACHINING CENTRES
Damian KOLNY
dkolny@ath.bielsko.plUniversity of Bielsko-Biala, Faculty of Mechanical Engineering and Computer Science, 43-309 Bielsko-Biała, Willowa 2 (Poland)
Dorota WIĘCEK
University of Bielsko-Biala, Faculty of Mechanical Engineering and Computer Science, 43-309 Bielsko-Biała, Willowa 2 (Poland)
Paweł ZIOBRO
ZPT Industry | Automation | Research & Development | Innovations (Poland)
Martin KRAJČOVIČ
University of Zilina, Industrial Engineering Department, 010 26 Žilina, Univerzitná 1, (Slovakia)
Abstract
The article presents practical knowledge about production process optimisation as a result of implementing a specialized system monitoring the work of machining tools. It features complex results of the conducted research with use of dedicated equipment and software, whose unconventional application may appear to be an effective IT tool for taking operational and strategic decisions in the machining area. This results from the possibility of analysing the obtained data in both current and long-term perspective, and taking decisions on this basis, which significantly conditions the rationality of using this type of solutions.
Keywords:
current process control, tool wear monitoring system, process optimizationReferences
Addona, D. M. D., & Teti, R. (2013). Image data processing via neural networks for tool wear prediction. Procedia CIRP, 12, 252–257. https://doi.org/10.1016/j.procir.2013.09.044
DOI: https://doi.org/10.1016/j.procir.2013.09.044
Google Scholar
Barreiro, J., Fernández-Abia, A. I., González-Laguna, A., & Pereira, O. (2017). TCM system in contour milling of very thick-very large steel plates based on vibration and AE signals. Journal of Materials Processing Technology, 246, 144–157. https://doi.org/10.1016/j.jmatprotec.2017.03.016
DOI: https://doi.org/10.1016/j.jmatprotec.2017.03.016
Google Scholar
Jemielniak, K. (2002). Automatyczna diagnostyka stanu narzędzia i procesu skrawania. Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej.
Google Scholar
Jurko, J. (2007). Monitoring and Diagnosis of Drill Wear and the Thermodynamic Phenomenas of Material Removal by drilling of Stainless Steels. In: E.E. Gdoutos (Ed.) Experimental Analysis of Nano and Engineering Materials and Structures (vol. 37, 77–78). Dordrecht: Springer. https://doi.org/10.1007/978-1-4020-6239-1_37
DOI: https://doi.org/10.1007/978-1-4020-6239-1_37
Google Scholar
Kious, M., Ouahabi, A., Boudraa, M., Serra, R., & Cheknane, A. (2010). Detection process approach of tool wear in high speed milling. Measurement, 43, 1439–1446. https://doi.org/10.1016/j.measurement.2010.08.014
DOI: https://doi.org/10.1016/j.measurement.2010.08.014
Google Scholar
Kuljanic, E., & Sortino, M. (2005). TWEM a method based on cutting forces monitoring tool wear in face milling, Mach. Tools Manuf. J., 45, 29–34. https://doi.org/10.1016/j.ijmachtools.2004.06.016
DOI: https://doi.org/10.1016/j.ijmachtools.2004.06.016
Google Scholar
Kuryjański, R. (2011). Obróbka skrawaniem i obrabiarki. Warszawa: Expol.
Google Scholar
Nouri, M., Fussell, B. K., Ziniti, B. L., & Linder, E. (2015). Real-time tool wear monitoring in milling using a cutting condition independent method. International Journal of Machine Tools and Manufacture, 89, 1–13. https://doi.org/10.1016/j.ijmachtools.2014.10.011
DOI: https://doi.org/10.1016/j.ijmachtools.2014.10.011
Google Scholar
Storch, B. (2001). Podstawy obróbki skrawaniem. Koszalin: Wydaw. Politechniki Koszalińskiej.
Google Scholar
Więcek, D. (2013). Implementation of Artificial Intelligence in Estimating Prime Costs of Producing Machine Elements. Advances in Manufacturing Science and Technology, 37, 43–53. https://doi.org/10.2478/amst-2013-0004
DOI: https://doi.org/10.2478/amst-2013-0004
Google Scholar
Wittbrodt, P. (2014). Nadzorowanie i prognozowanie stanu narzędzi skrawających w procesie skrawania. Innowacje w Zarządzaniu i Inżynierii Produkcji (cz. 1, 833–834). Zakopane: Oficyna Wydawnicza Polskiego Towarzystwa Zarządzania Produkcją.
Google Scholar
Authors
Damian KOLNYdkolny@ath.bielsko.pl
University of Bielsko-Biala, Faculty of Mechanical Engineering and Computer Science, 43-309 Bielsko-Biała, Willowa 2 Poland
Authors
Dorota WIĘCEK University of Bielsko-Biala, Faculty of Mechanical Engineering and Computer Science, 43-309 Bielsko-Biała, Willowa 2 Poland
Authors
Paweł ZIOBROZPT Industry | Automation | Research & Development | Innovations Poland
Authors
Martin KRAJČOVIČUniversity of Zilina, Industrial Engineering Department, 010 26 Žilina, Univerzitná 1, Slovakia
Statistics
Abstract views: 104PDF downloads: 6
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Most read articles by the same author(s)
- Damian KOLNY, Dawid KURCZYK, Józef MATUSZEK, COMPUTER SUPPORT OF ERGONOMIC ANALYSIS OF WORKING CONDITIONS AT WORKSTATIONS , Applied Computer Science: Vol. 15 No. 1 (2019)
- Martin KRAJČOVIČ, Patrik GRZNÁR, UTILISATION OF EVOLUTION ALGORITHM IN PRODUCTION LAYOUT DESIGN , Applied Computer Science: Vol. 13 No. 3 (2017)
- Dariusz PLINTA, Martin KRAJČOVIČ, APPLICATION OF THE AUGMENTED REALITY IN PRODUCTION PRACTICE , Applied Computer Science: Vol. 13 No. 2 (2017)
Similar Articles
- Jarosław WIKAREK, Paweł SITEK, Mieczysław JAGODZIŃSKI, A DECLARATIVE APPROACH TO SHOP ORDERS OPTIMIZATION , Applied Computer Science: Vol. 15 No. 4 (2019)
- Rumesh Edirimanne, W Madushan Fernando, Peter Nielsen, H. Niles Perera, Amila Thibbotuwawa, OPTIMIZING UNMANNED AERIAL VEHICLE BASED FOOD DELIVERY THROUGH VEHICLE ROUTING PROBLEM: A COMPARATIVE ANALYSIS OF THREE DELIVERY SYSTEMS. , Applied Computer Science: Vol. 20 No. 1 (2024)
- Jarosław ZUBRZYCKI, Antoni ŚWIĆ, Łukasz SOBASZEK, Juraj KOVAC, Ruzena KRALIKOVA, Robert JENCIK, Natalia SMIDOVA, Polyxeni ARAPI, Peter DULENCIN, Jozef HOMZA, CYBER-PHYSICAL SYSTEMS TECHNOLOGIES AS A KEY FACTOR IN THE PROCESS OF INDUSTRY 4.0 AND SMART MANUFACTURING DEVELOPMENT , Applied Computer Science: Vol. 17 No. 4 (2021)
- Shadan Mohammed Jihad ABDALWAHID, Raghad Zuhair YOUSIF, Shahab Wahhab KAREEM, ENHANCING APPROACH USING HYBRID PAILLER AND RSA FOR INFORMATION SECURITY IN BIGDATA , Applied Computer Science: Vol. 15 No. 4 (2019)
- Firas ALMUKHTAR, Nawzad MAHMOODD, Shahab KAREEM, SEARCH ENGINE OPTIMIZATION: A REVIEW , Applied Computer Science: Vol. 17 No. 1 (2021)
- Nasir A. Al-Awad, Izz K. Abboud, Muaayed F. Al-Rawi, GENETIC ALGORITHM-PID CONTROLLER FOR MODEL ORDER REDUCTION PANTOGRAPHCATENARY SYSTEM , Applied Computer Science: Vol. 17 No. 2 (2021)
- Nasir ALAWAD, Afaf ALSEADY, FUZZY CONTROLLER OF MODEL REDUCTION DISTILLATION COLUMN WITH MINIMAL RULES , Applied Computer Science: Vol. 16 No. 2 (2020)
- Pornsiri KHUMLA, Kamthorn SARAWAN, IMPROVING MATERIAL REQUIREMENTS PLANNING THROUGH WEB-BASED: A CASE STUDY THAILAND SMEs , Applied Computer Science: Vol. 19 No. 4 (2023)
- Noor SABAH, Ekhlas HAMEED, Muayed S AL-HUSEINY, OPTIMAL SLIDING MODE CONTROLLER DESIGN BASED ON WHALE OPTIMIZATION ALGORITHM FOR LOWER LIMB REHABILITATION ROBOT , Applied Computer Science: Vol. 17 No. 3 (2021)
- Paweł PIEŚKO, Magdalena ZAWADA-MICHAŁOWSKA, USEFULNESS OF MODAL ANALYSIS FOR EVALUATION OF MILLING PROCESS STABILITY , Applied Computer Science: Vol. 13 No. 1 (2017)
You may also start an advanced similarity search for this article.