AUTOMATIC IDENTIFICATION OF DYSPHONIAS USING MACHINE LEARNING ALGORITHMS

Miguel Angel BELLO RIVERA

podriaservirte@gmail.com
Tecnológico Nacional de México (Mexico)
https://orcid.org/0009-0003-6641-3094

Carlos Alberto REYES GARCÍA


National Institute of Astrophysics, Optics, and Electronics (INAOE) (Mexico)

Tania Cristal TALAVERA ROJAS


La Universidad Autónoma de Asunción (UAA) (Paraguay)
https://orcid.org/0000-0001-7656-3115

Perfecto Malaquías QUINTERO FLORES


El Tecnológico Nacional de México/Instituto Tecnológico de Apizaco (Mexico)
https://orcid.org/0000-0001-7651-4364

Rodolfo Eleazar PÉREZ LOAIZA


El Tecnológico Nacional de México/Instituto Tecnológico de Apizaco (Mexico)
https://orcid.org/0000-0002-6500-258X

Abstract

Dysphonia is a prevalent symptom of some respiratory diseases that affects voice quality, even for prolonged periods. For its diagnosis, speech-language pathologists make use of different acoustic parameters to perform objective evaluations on patients and determine the type of dysphonia that affects them, such as hyperfunctional and hypofunctional dysphonia, which is important because each type requires a different treatment. In the field of artificial intelligence this problem has been addressed through the use of acoustic parameters that are used as input data to train machine learning and deep learning models. However, its purpose is usually to identify whether a patient is ill or not, making binary classifications between healthy voices and voices with dysphonia, but not between dysphonias. In this paper, harmonic-to-noise ratio, cepstral peak prominence-smoothed, zero crossing rate and the means of the Mel frequency cepstral coefficients (2-19) are used to make multiclass classification of voices with euphony, hyperfunction and hypofunction by means of six machine learning algorithms, which are: Random Forest, K nearest neighbors, Logistic regression, Decision trees, Support vector machines and Naive Bayes. In order to evaluate which of them presents a better performance to identify the three voice classes, bootstrap.632 was used. It is concluded that the best confidence interval ranges from 87% to 92%, in terms of accuracy for the K Nearest Neighbors model. Results can be implemented in the development of a complementary application for the clinical diagnosis or monitoring of a patient under the supervision of a specialist.


Keywords:

dysphonia, machine learning, multiclass classification, voice signal

Altayeb, M., & Al-Ghraibah, A. (2022). Classification of three pathological voices based on specific features groups using support vector machine. International Journal of Electrical and Computer Engineering (IJECE), 12(1), 946-956. https://doi.org/10.11591/ijece.v12i1.pp946-956
DOI: https://doi.org/10.11591/ijece.v12i1.pp946-956   Google Scholar

Behlau, M., & Pontes, P. (1989). Avaliação Global da Voz. Editora Paulista Publicações Médicas.
  Google Scholar

Behlau, M., Madazio, G., Feijó, D., Azevedo, R., Gielow, I., & Rehder, M. (2005). Perfeccionamiento vocal y tratamiento fonoaudiológico de las disfonías. In M. Behlau (Eds.), Voz: O livro do especialista. Thieme Revinter.
  Google Scholar

Celdrán, E. M. (2015). Naturaleza fonética de la consonante ‘ye’en español. Normas: revista de estudios lingüísticos hispánicos, 5, 117-131. https://doi.org/10.7203/Normas.5.6825
DOI: https://doi.org/10.7203/Normas.5.6825   Google Scholar

Cesari, U., De Pietro, G., Marciano, E., Niri, C., Sannino, G., & Verde, L. (2018). A new database of healthy and pathological voices. Computers & Electrical Engineering, 68, 310-321. https://doi.org/10.1016/j.compeleceng.2018.04.008
DOI: https://doi.org/10.1016/j.compeleceng.2018.04.008   Google Scholar

Charbuty, B., & Abdulazeez, A. (2021). Classification based on decision tree algorithm for machine learning. Journal of Applied Science and Technology Trends, 2(01), 20-28. https://doi.org/10.38094/jastt20165
DOI: https://doi.org/10.38094/jastt20165   Google Scholar

Chen, L., & Chen, J. (2022). Deep neural network for automatic classification of pathological voice signals. Journal of Voice, 36(2), 288.e15-288.e24. https://doi.org/10.1016/j.jvoice.2020.05.029
DOI: https://doi.org/10.1016/j.jvoice.2020.05.029   Google Scholar

Daniels, L., & Minot, N. (2019). An introduction to statistics and data analysis using Stata®: From research design to final report. Sage Publications.
  Google Scholar

Descamps, G., Verset, L., Trelcat, A., Hopkins, C., Lechien, J. R., Journe, F., & Saussez, S. (2020). ACE2 protein landscape in the head and neck region: the conundrum of SARS-CoV-2 infection. Biology, 9(8), 235. https://doi.org/10.3390%2Fbiology9080235
DOI: https://doi.org/10.3390/biology9080235   Google Scholar

Efron, B. (1983). Estimating the error rate of a prediction rule: improvement on cross-validation. Journal of the American Statistical Association, 78(382), 316-331. https://doi.org/10.2307/2288636
DOI: https://doi.org/10.1080/01621459.1983.10477973   Google Scholar

Farias, P. (2016). Guía clínica para el especialista en laringe y voz. Librería Akadia Editorial.
  Google Scholar

Flórez-Gómez, A. F., Orozco-Arroyave, J. R., & Roldán-Vasco, S. (2022). Correlación entre espacios de características acústicas del habla y trastornos clínicos de la voz en pacientes con disfagia. TecnoLógicas, 25(53), e2220. https://doi.org/10.22430/22565337.2220
DOI: https://doi.org/10.22430/22565337.2220   Google Scholar

Hassan, A., Shahin, I., & Alsabek, M. B. (2020). COVID-19 detection system using recurrent neural networks. 2020 International conference on communications, computing, cybersecurity, and informatics (CCCI) (pp. 1-5). IEEE. https://doi.org/10.1109/CCCI49893.2020.9256562
DOI: https://doi.org/10.1109/CCCI49893.2020.9256562   Google Scholar

Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N.-H., Nitsche, A., Müller, M. A., Drosten, C., & Pöhlmann, S. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181(2), 271-280.e8. https://doi.org/10.1016/j.cell.2020.02.052
DOI: https://doi.org/10.1016/j.cell.2020.02.052   Google Scholar

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning. Springer.
DOI: https://doi.org/10.1007/978-1-4614-7138-7   Google Scholar

López, J. A. P. (1997). Los trastornos de la voz en el personal docente de logroño. Estudio de la voz en los profesionales de la enseñanza. (Doctoral dissertation, Universidad de Navarra).
  Google Scholar

López, J. A. P. (2000). Estudio de la prevalencia de los trastornos de la voz en el personal docente de Logroño. Zubía, 12, 111-145.
  Google Scholar

Murphy, K. P. (2006). Naive bayes classifiers. University of British Columbia, 18(60), 1-8.
  Google Scholar

Núñez-Batalla, F., Cartón-Corona, N., Vasile, G., García-Cabo, P., Fernández-Vanes, L., & Llorente-Pendás, J. L. (2019). Validez de las medidas del pico cepstral para la valoración objetiva de la disfonía en sujetos de habla hispana. Acta Otorrinolaringológica Española, 70(4), 222-228. https://doi.org/10.1016/j.otoeng.2018.04.005
DOI: https://doi.org/10.1016/j.otorri.2018.04.008   Google Scholar

Radha, N., Sachin Madhavan, R. M., & Sameera holy, S. (2021). Parkinson’s Disease detection using Machine Learning Techniques. International Journal of Early Childhood Special Education (INT-JECSE), 30(2), 543. https://doi.org/10.24205/03276716.2020.4055
  Google Scholar

Rivera, M. A. B., Flores, P. M. Q., Loaiza, R. E. P., & Rivera, L. G. (2022). Analysis of audio signals using deep learning algorithms applied to COVID diagnostic systems. 2022 IEEE Mexican International Conference on Computer Science (ENC) (pp. 1-6). IEEE. https://doi.org/10.1109/ENC56672.2022.9882932
DOI: https://doi.org/10.1109/ENC56672.2022.9882932   Google Scholar

Schonlau, M., & Zou, R. Y. (2020). The random forest algorithm for statistical learning. The Stata Journal, 20(1), 3-29. https://doi.org/10.1177/1536867X20909688
DOI: https://doi.org/10.1177/1536867X20909688   Google Scholar

Taunk, K., De, S., Verma, S., & Swetapadma, A. (2019). A brief review of nearest neighbor algorithm for learning and classification. 2019 International Conference on Intelligent Computing and Control Systems (ICCS) (pp. 1255-1260). IEEE. https://doi.org/10.1109/ICCS45141.2019.9065747
DOI: https://doi.org/10.1109/ICCS45141.2019.9065747   Google Scholar

Verdaguer, J. M., Górriz, C., Prim, M. P., del Palacio, A. J., Gavilán, J., & de Diego, J. I. (2008). Análisis de los cambios en el espectrograma tras la intubación endotraqueal. Acta Otorrinolaringológica Española, 59(5), 217-222. https://doi.org/10.1016/S0001-6519(08)73298-9
DOI: https://doi.org/10.1016/S0001-6519(08)73298-9   Google Scholar

Verde, L., De Pietro, G., Alrashoud, M., Ghoneim, A., Al-Mutib, K. N., & Sannino, G. (2019). Leveraging artificial intelligence to improve voice disorder identification through the use of a reliable mobile app. IEEE Access, 7, 124048-124054. https://doi.org/10.1109/ACCESS.2019.2938265
DOI: https://doi.org/10.1109/ACCESS.2019.2938265   Google Scholar

Woldert-Jokisz, B. (2007). Saarbruecken voice database. Computer Science.
  Google Scholar

Download


Published
2023-12-31

Cited by

BELLO RIVERA, M. A., REYES GARCÍA, C. A., TALAVERA ROJAS, T. C., QUINTERO FLORES, P. M., & PÉREZ LOAIZA, R. E. (2023). AUTOMATIC IDENTIFICATION OF DYSPHONIAS USING MACHINE LEARNING ALGORITHMS. Applied Computer Science, 19(4), 14–25. https://doi.org/10.35784/acs-2023-32

Authors

Miguel Angel BELLO RIVERA 
podriaservirte@gmail.com
Tecnológico Nacional de México Mexico
https://orcid.org/0009-0003-6641-3094

Authors

Carlos Alberto REYES GARCÍA 

National Institute of Astrophysics, Optics, and Electronics (INAOE) Mexico

Authors

Tania Cristal TALAVERA ROJAS 

La Universidad Autónoma de Asunción (UAA) Paraguay
https://orcid.org/0000-0001-7656-3115

Authors

Perfecto Malaquías QUINTERO FLORES 

El Tecnológico Nacional de México/Instituto Tecnológico de Apizaco Mexico
https://orcid.org/0000-0001-7651-4364

Authors

Rodolfo Eleazar PÉREZ LOAIZA 

El Tecnológico Nacional de México/Instituto Tecnológico de Apizaco Mexico
https://orcid.org/0000-0002-6500-258X

Statistics

Abstract views: 435
PDF downloads: 200


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.