DESIGN AND DYNAMICS MODELING FOR ELECTRIC VEHICLE
Maria TOMASIKOVA
tomasikovam@fstroj.uniza.sk* University of Zilina, Faculty of Mechanical Engineering, Univerzitná 1, 010 26 Žilina, (Slovakia)
Frantisek BRUMERČÍK
* University of Zilina, Faculty of Mechanical Engineering, Univerzitná 1, 010 26 Žilina (Slovakia)
Aleksander NIEOCZYM
Lublin University of Technology, Faculty of Mechanical Engineering, Nadbystrzycka 36, 20-618 Lublin (Poland)
Abstract
This paper descript software for vehicle simulation and mathematical models that describe the motion of the vehicle. A dynamic simulation model of vehicle was developed using Matlab/Simulink and SimDriveline toolbox. The model has a configurable structure that is suitable to simulation with multiple levels. The powertrain system model developed using Simulink and SimDrivline could also be used as a generic, modular and flexible vehicle modeling platform to support the integration of powertrain design and control system optimization.
Keywords:
mathematical model of vehicle, multibody system simulation, dynamic simulationReferences
Fang, Ch., Cao, Z., Ektesabi, M., Kapoor, A., & Sayem, A. (2013). Driveline modelling analysis for active driveability control. In Systems, Process & Control (ICSPC), 2013 IEEE Conference. Kuala Lumpur, Malaysia: IEEE. https://doi.org/10.1109/SPC.2013.6735117
DOI: https://doi.org/10.1109/SPC.2013.6735117
Google Scholar
Jeong, H., & Lee, K. (2000). Friction coefficient, torque estimation, smooth shift control law for an automatic power transmission. KSME International Journal, 14(5), 508–517. https://doi.org/10.1007/BF03185653
DOI: https://doi.org/10.1007/BF03185653
Google Scholar
Mousavi, M., Saman, R., Pakniyat, A., & Boulet, B. (2014). Dynamic modeling and controller design for a seamless two-speed transmission for electric vehicles. Control Applications (CCA), 2014 IEEE Conference. Juan Les Antibes, France: IEEE. https://doi.org/10.1109/CCA.2014.6981411
DOI: https://doi.org/10.1109/CCA.2014.6981411
Google Scholar
Kucera, L., Lukac, M., Jurak, L., & Brumercik, F. (2009). Hydromechanical automatic transmission. Communications, 11(2), 33–35.
DOI: https://doi.org/10.26552/com.C.2009.2.33-35
Google Scholar
Pacejka, H. (2005). Tyre and vehicle dynamics. Elsevier.
Google Scholar
Pawlus, W., Hovland, G., & Choux, M. (2015). Drivetrain design optimization for electrically actuated systems via mixed integer programming. In Industrial Electronics Society, IECON 2015 – 41st Annual Conference of the IEEE. Yokohama, Japan: IEEE. https://doi.org/10.1109/IECON.2015.7392307
DOI: https://doi.org/10.1109/IECON.2015.7392307
Google Scholar
Cheng, R., Dong, J., & Dong, Z. (2013). Modelling and simulation of a multiple-regime plug-in hybrid electric vehicle. In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (1, pp. V001T01A009). Portland, Oregon, USA. https://doi.org/10.1115/DETC2013-13619
DOI: https://doi.org/10.1115/DETC2013-13619
Google Scholar
Tomasikova, M., Nieoczym, A., & Brumercik, F. (2015). Vehicle drivetrain modelling. In Transcom Proceedings 2015, 11-th European Conference of Young Researches and Scientists (pp.265-268). Zilina, Slovak Republic.
Google Scholar
Tomasikova, M., Brumercik, F., & Nieoczym, A. (2015). Vehicle simulation model creation. LOGI, Scientific Journal on Transport and Logistics, 6(1), 130–136.
Google Scholar
Wallmark, O., & Nybacka M. (2014). Design and implementation of an experimental research and concept demonstration vehicle. In Vehicle Power and Propulsion Conference (VPPC), 2014 IEEE. Coimbra, Portugal: IEEE. https://doi.org/10.1109/VPPC.2014.7007042
DOI: https://doi.org/10.1109/VPPC.2014.7007042
Google Scholar
Zhou, J., Shen, X., & Liu, D. (2014). Modeling and simulation for electric vehicle powertrain controls. In Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), 2014 IEEE Conference and Expo. Beijing, China: IEEE. https://doi.org/10.1109/ITEC-P.2014.6940824
Google Scholar
Authors
Maria TOMASIKOVAtomasikovam@fstroj.uniza.sk
* University of Zilina, Faculty of Mechanical Engineering, Univerzitná 1, 010 26 Žilina, Slovakia
Authors
Frantisek BRUMERČÍK* University of Zilina, Faculty of Mechanical Engineering, Univerzitná 1, 010 26 Žilina Slovakia
Authors
Aleksander NIEOCZYMLublin University of Technology, Faculty of Mechanical Engineering, Nadbystrzycka 36, 20-618 Lublin Poland
Statistics
Abstract views: 286PDF downloads: 8
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Similar Articles
- Ekhlas H. KARAM, Eman H. JADOO, DESIGN OF MODIFIED SECOND ORDER SLIDING MODE CONTROLLER BASED ON ST ALGORITHM FOR BLOOD GLUCOSE REGULATION SYSTEMS , Applied Computer Science: Vol. 16 No. 2 (2020)
- Md. Torikur RAHMAN, Mohammad ALAUDDIN, Uttam Kumar DEY, Dr. A.H.M. Saifullah SADI, ADAPTIVE SECURE AND EFFICIENT ROUTING PROTOCOL FOR ENHANCE THE PERFORMANCE OF MOBILE AD HOC NETWORK , Applied Computer Science: Vol. 19 No. 3 (2023)
- Konrad KANIA, Mariusz MAZUREK, Tomasz RYMARCZYK, APPLICATION OF FINITE DIFFERENCE METHOD FOR MEASUREMENT SIMULATION IN ULTRASOUND TRANSMISSION TOMOGRAPHY , Applied Computer Science: Vol. 18 No. 2 (2022)
- Mohamed ELBAHRI, Nasreddine TALEB, Sid Ahmed El Mehdi ARDJOUN, Chakib Mustapha Anouar ZOUAOUI , FEW-SHOT LEARNING WITH PRE-TRAINED LAYERS INTEGRATION APPLIED TO HAND GESTURE RECOGNITION FOR DISABLED PEOPLE , Applied Computer Science: Vol. 20 No. 2 (2024)
- Hawkar ASAAD, Shavan ASKAR, Ahmed KAKAMIN, Nayla FAIQ, EXPLORING THE IMPACT OF ARTIFICIAL INTELLIGENCE ON HUMANROBOT COOPERATION IN THE CONTEXT OF INDUSTRY 4.0 , Applied Computer Science: Vol. 20 No. 2 (2024)
- Paweł MAGRYTA, Grzegorz BARAŃSKI, SIMULATION OF TORQUE VARIATIONS IN A DIESEL ENGINE FOR LIGHT HELICOPTERS USING PI CONTROL ALGORITHMS , Applied Computer Science: Vol. 20 No. 3 (2024)
- Kuppan Chetty RAMANATHAN, Manju MOHAN, Joshuva AROCKIA DHANRAJ, BACKWARD MOTION PLANNING AND CONTROL OF MULTIPLE MOBILE ROBOTS MOVING IN TIGHTLY COUPLED FORMATIONS , Applied Computer Science: Vol. 17 No. 3 (2021)
- Piotr WITTBRODT, Iwona ŁAPUŃKA, Gulzhan BAYTIKENOVA, Arkadiusz GOLA, Alfiya ZAKIMOVA, IDENTIFICATION OF THE IMPACT OF THE AVAILABILITY FACTOR ON THE EFFICIENCY OF PRODUCTION PROCESSES USING THE AHP AND FUZZY AHP METHODS , Applied Computer Science: Vol. 18 No. 4 (2022)
- Muaayed F. AL-RAWI, Izz K. ABBOUD, Nasir A. AL-AWAD, PERFORMANCE ANALYSIS AND EVALUATION OF MASSIVE MIMO SYSTEM , Applied Computer Science: Vol. 16 No. 2 (2020)
- Konrad PIETRYKOWSKI, Tytus TULWIN, THE NONUNIFORMITY OF THE PISTON MOTION OF THE RADIAL ENGINE , Applied Computer Science: Vol. 13 No. 2 (2017)
<< < 2 3 4 5 6 7 8 9 10 11 > >>
You may also start an advanced similarity search for this article.