APPLICATION OF FINITE DIFFERENCE METHOD FOR MEASUREMENT SIMULATION IN ULTRASOUND TRANSMISSION TOMOGRAPHY
Article Sidebar
Open full text
Issue Vol. 18 No. 2 (2022)
-
USE OF SERIOUS GAMES FOR THE ASSESSMENT OF MILD COGNITIVE IMPAIRMENT IN THE ELDERLY
Moon-gee CHOI5-15
-
A DISTRIBUTED ALGORITHM FOR PROTEIN IDENTIFICATION FROM TANDEM MASS SPECTROMETRY DATA
Katarzyna ORZECHOWSKA, Tymon RUBEL, Robert KURJATA, Krzysztof ZAREMBA16-27
-
CONTRAST ENHANCEMENT OF SCANNING ELECTRON MICROSCOPY IMAGES USING A NONCOMPLEX MULTIPHASE ALGORITHM
Zaid ALSAYGH, Zohair AL-AMEEN28-42
-
STABILITY AND FAILURE OF THIN-WALLED COMPOSITE STRUCTURES WITH A SQUARE CROSS-SECTION
Błażej CZAJKA, Patryk RÓŻYŁO, Hubert DĘBSKI43-55
-
TOMATO DISEASE DETECTION MODEL BASED ON DENSENET AND TRANSFER LEARNING
Mahmoud BAKR, Sayed ABDEL-GABER, Mona NASR, Maryam HAZMAN56-70
-
KNEE JOINT OSTEOARTHRITIS DIAGNOSIS BASED ON SELECTED ACOUSTIC SIGNAL DISCRIMINANTS USING MACHINE LEARNING
Robert KARPIŃSKI71-85
-
CYBER SECURITY IN INDUSTRIAL CONTROL SYSTEMS (ICS): A SURVEY OF ROWHAMMER VULNERABILITY
Hakan AYDIN, Ahmet SERTBAŞ86-100
-
APPLICATION OF FINITE DIFFERENCE METHOD FOR MEASUREMENT SIMULATION IN ULTRASOUND TRANSMISSION TOMOGRAPHY
Konrad KANIA, Mariusz MAZUREK, Tomasz RYMARCZYK101-109
Archives
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
Main Article Content
DOI
Authors
Abstract
In this work, we present a computer simulation model that generates the propagation of sound waves to solve a forward problem in ultrasound transmission tomography. The simulator can be used to create data sets used in the supervised learning process. A solution to the "free-space" boundary problem was proposed, and the memory consumption was significantly optimized from O(n2) to O(n). The given method of simulating wave scattering enables the control of the noise extinction time within the tomographic probe and the permeability of the sound wave. The presented version of the script simulates the classic variant of a circular probe with evenly distributed sensors around the circumference.
Keywords:
References
Antunes dos Santos Júnior, A. (2012). Ultrasonic Waves. BoD – Books on Demand. DOI: https://doi.org/10.5772/1411
Asadzadeh, M. (2020). An introduction to the finite element method for differential equations. John Wiley & Sons. DOI: https://doi.org/10.1002/9781119671688
Benito, J., García, A., Gavete, L., Negreanu, M., Ureña, F., & Vargas, A. (2020). Solving a fully parabolic chemotaxis system with periodic asymptotic behavior using generalized finite difference method. Applied Numerical Mathematics, 157, 356–371. https://doi.org/10.1016/j.apnum.2020.06.011 DOI: https://doi.org/10.1016/j.apnum.2020.06.011
Bilbao, S. (2013). Modeling of complex geometries and boundary conditions in finite difference/Finite volume time domain room acoustics simulation. IEEE Transactions on Audio, Speech, and Language Processing, 21(7), 1524–1533. https://doi.org/10.1109/tasl.2013.2256897 DOI: https://doi.org/10.1109/TASL.2013.2256897
Botteldooren, D. (1994). Acoustical finite-difference time-domain simulation in a quasi-Cartesian grid. Journal of the Acoustical Society of America, 95, 2313–2319. DOI: https://doi.org/10.1121/1.409866
Chiba, O., Kashiwa, T., Shimoda, H., Kagami, S., & Fukai, I. (1993). Analysis of sound fields in threedimensional space by the time-dependent finite-difference method based on the leapfrog algorithm. Journal Acoustical Society of Japan, 49, 551–562.
Degroot‐Hedlin, C. D. (2008). Finite difference time domain synthesis of infrasound propagation through an absorbing atmosphere. The Journal of the Acoustical Society of America, 123(5), 3839–3839. https://doi.org/10.1121/1.2935641 DOI: https://doi.org/10.1121/1.2935641
Forsythe, G. E., & Wasow, W. R. (1960). Finite-difference methods for partial differential equations. John Wiley & Sons.
Ishimaru, A. (2017). Electromagnetic wave propagation, radiation, and scattering: From fundamentals to applications. John Wiley & Sons. DOI: https://doi.org/10.1002/9781119079699
Kania, K., Maj, M., Rymarczyk, T., Adamkiewicz, P., & Gołąbek, M. (2020). Image reconstruction in ultrasound transmission tomography using the Fermat’s principle. Przegląd Elektrotechniczny, 1(1), 188–191. https://doi.org/10.15199/48.2020.01.41 DOI: https://doi.org/10.15199/48.2020.01.41
Kania, K., Rymarczyk, T., Maj, M., & Gołąbek, M. (2019). 2019 applications of electromagnetics in modern engineering and medicine (PTZE). IEEE. https://doi.org/10.23919/PTZE.2019.8781687 DOI: https://doi.org/10.23919/PTZE.2019.8781687
Kania, K., Rymarczyk, T., Maj, M., Gołąbek, M., Adamkiewicz, P., & Sikora, J. (2019). 2019 international interdisciplinary PhD workshop (IIPhDW). IEEE. https://doi.org/10.1109/IIPHDW.2019.8755416 DOI: https://doi.org/10.1109/IIPHDW.2019.8755416
Knabner, P., & Angermann, L. (2021). Numerical methods for elliptic and parabolic partial differential equations: With contributions by Andreas Rupp. Springer Nature. DOI: https://doi.org/10.1007/978-3-030-79385-2
Kumar, A. (2004). Isotropic finite-differences. Journal of Computational Physics, 201(1), 109–118. https://doi.org/10.1016/j.jcp.2004.05.005 DOI: https://doi.org/10.1016/j.jcp.2004.05.005
Li, W., Li, S., Shao, X., & Li, Z. (2019). Proceedings of the 6th conference on sound and music technology (CSMT): Revised selected papers. Springer. DOI: https://doi.org/10.1007/978-981-13-8707-4
Liu, Y., & Sen, M. K. (2009). A new time-space domain high-order finite-difference method for the acoustic wave equation. Journal of Computational Physics, 228(23), 8779–8806. https://doi.org/10.1016/j.jcp.2009.08.027 DOI: https://doi.org/10.1016/j.jcp.2009.08.027
Liu, Y., Ding, L., & Sen, M. K. (2011). Comparisons between the hybrid ABC and the PML method for 2D high‐order finite‐difference acoustic modeling. SEG Technical Program Expanded Abstracts 2011. https://doi.org/10.1190/1.3627807 DOI: https://doi.org/10.1190/1.3627807
Mickens, R. E. (1994). Nonstandard finite difference models of differential equations. World Scientific. Polakowski, K. A., Rymarczyk, T., & Sikora, J. (2020). Obrazowanie ultradźwiękowe: Wybrane algorytmy obrazowania. Oficyna Wydawnicza Politechniki Warszawskiej. DOI: https://doi.org/10.1142/2081
Polakowski, K., & Sikora, J. (2016). Podstawy matematyczne obrazowania ultradźwiękowego. Politechnika Lubelska.
Sullivan, D., & Young, J. (2001). Far-field time-domain calculation from aperture radiators using the FDTD method. IEEE Transactions on Antennas and Propagation, 49(3), 464–469. https://doi.org/10.1109/8.918622 DOI: https://doi.org/10.1109/8.918622
Svensson, U. P., Fred, R. I., & Vanderkooy, J. (1999). An analytic secondary source model of edge diffraction impulse responses. The Journal of the Acoustical Society of America, 106(5), 2331–2344. https://doi.org/10.1121/1.428071 DOI: https://doi.org/10.1121/1.428071
Thomas, J. (2013). Numerical partial differential equations: Finite difference methods. Springer Science & Business Media.
Thomée, V. (2001). From finite differences to finite elements a short history of numerical analysis of partial differential equations. Partial Differential Equations, 2001, 1–54. https://doi.org/10.1016/b978-0-444-50616-0.50004-x DOI: https://doi.org/10.1016/B978-0-444-50616-0.50004-X
Article Details
Abstract views: 362
License
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
